平成 20 年度 熊本総合医療福祉学院 一般後期入学試験問題 数学 I・数学 A(平成 20 年 2 月 16 日)60 分

第1問 次の(1)~(3)に答えよ。

(1) 2次方程式 $x^2-3x+2=0$ の 2 つの解を lpha , eta とするとき , 次の [問 1] ,

$$rac{1}{lpha}+rac{1}{eta}=$$
 [問1], $lpha^3+eta^3=$ [問2]

$$1 -27$$

$$(2)$$
 -10

$$(3) -9$$

$$\frac{3}{2}$$
 $-\frac{3}{2}$

$$\boxed{6} \quad \frac{1}{2}$$

$$\boxed{8} \quad \frac{3}{2}$$

$$9$$
 9

$$\bigcirc 27$$

(2) an heta = 2 $(0^\circ \le heta \le 90^\circ)$ とするとき,次の[問3],[問4] に適するも のを ① ~ ② から選べ。

$$\sin\theta\cos\theta = \left[\begin{bmatrix} \exists 3 \end{bmatrix} \right], \frac{\cos\theta}{1-\cos\theta} + \frac{\sin\theta}{1-\sin\theta} = \left[\begin{bmatrix} \exists 4 \end{bmatrix} \right]$$

$$1 - \frac{\sqrt{5}}{5}$$
 $2 - \frac{2}{5}$ $3 - \frac{1}{5}$ $4 \frac{2}{5}$ $5 \frac{\sqrt{5}}{5}$

$$2 -\frac{2}{5}$$

$$\boxed{3} -\frac{1}{5}$$

$$\underbrace{2}_{5}$$

$$\boxed{5} \ \frac{\sqrt{5}}{5}$$

$$6 \frac{9\sqrt{5}-17}{4}$$

$$\frac{\sqrt{5}+1}{4}$$

$$8 \frac{2\sqrt{5}+1}{5}$$

$$0 \frac{9\sqrt{5} + 17}{4}$$

(3) x に関する 2 つの整式 A , B があり ,

$$A + 2B = x^2 + 3x + 4$$
, $3A - B = 3x^2 - 5x - 9$

をみたすとき,次の $[\hspace*{0.6em} | \hspace*{$

$$A=x^2+$$
 [問5] $x+$ [問6], $B=$ [問7] $x+3$

$$(1)$$
 -5

$$(2)$$
 -4

$$3 -3$$

$$\begin{bmatrix} 5 \end{bmatrix}$$
 -1

$$6 \ 0 \ 7 \ 1 \ 8 \ 2 \ 9 \ 3 \ 0 \ 4$$

$$(7)$$
 1

$$(8)$$
 2

$$\bigcirc$$
 4

第2問	0,1	.,2,3 0 4	個の	数字を使っ	て整	数を作ると	とき ,	次の [問8],[[問9]に
	適するものを $1 \sim 0$ から選べ。									
	(1)	(1) 4個の数字を繰り返して用いることが許されない場合に,2桁の整数は 【問8】通りできる。								
	(2)	(2) 4個の数字を繰り返して用いることが許される場合に ,3桁の整数は [問 9] 通りできる。							は〔問9〕	
	1	6	$\overline{2}$	9	3	12	$\overline{4}$	16	$\overline{5}$	18
	6	24	7	28	8	36	9	48	0	60
第3問		1の円 O ₁ と O ₁ と円 O ₂								
	適す	るものを 1	` ~ '	0 から選べ	•					
	(1)	$\angle OO_1O_2 =$	90°	のとき , r :	= [[月10〕であ	る。			
	(2)	$\angle OO_1O_2 =$	60°	のとき , r :	_ - 	月11〕であ	る。			
	1	$\frac{1}{2}$	2	$\frac{1}{3}$	3	1	4	$\frac{3}{2}$	5	
	6	2	7	$\frac{3}{5}$	8	3	9	$\sqrt{5}$	\bigcirc	$\frac{2\sqrt{5}}{3}$
第 4 問 1 から 100 までの番号がついたカードがある。この中から 1 枚のカードを引き								-ドを引き		
出すとき,次の $[extrm{ $										
	(1)	引き出した	カー	ドが3の倍	·数で	ある確率に	其[問		,	
	(2)	引き出した	カー	ドが3かつ	4 の	倍数である	確率	 は[問13]	である	3 。
	(3)	引き出して	た力	ードが3ま	たは	4 の倍数で	ゔある	確率は[問]	14)7	である。
	(4)	引き出した ある。	カー	・ドが3の倍	き数で	ごあるが 4	の倍額	数でない確認	— 率は[[問15]で
	$ \begin{array}{c} \boxed{1} \\ \boxed{6} \end{array} $	$ \begin{array}{r} 2\\ \overline{25}\\ \underline{29}\\ \overline{50} \end{array} $	27		$\frac{3}{8}$		49	$\frac{21}{50}$ $\frac{3}{4}$	$ \begin{array}{c} 5\\ 0 \end{array} $	$ \frac{1}{2} $ $ \frac{23}{25} $

解答例

第1問 (1)
$$x^2 - 3x + 2 = 0$$
 を解いて $x = 1, 2$

よって
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$$
 $\alpha^3 + \beta^3 = 1^3 + 2^3 = 9$

$$(2) 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta} \text{ から} \quad \cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + 2^2} = \frac{1}{5}$$

$$0^\circ \le \theta \le 90^\circ \text{ より}, \cos \theta \ge 0 \text{ であるから} \quad \cos \theta = \frac{1}{\sqrt{5}}$$
また
$$\sin \theta = \tan \theta \times \cos \theta = 2 \times \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{5}}$$

よって
$$\sin\theta\cos\theta = \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{2}{5}$$

$$\frac{\cos\theta}{1-\cos\theta} + \frac{\sin\theta}{1-\sin\theta} = \frac{\frac{1}{\sqrt{5}}}{1-\frac{1}{\sqrt{5}}} + \frac{\frac{2}{\sqrt{5}}}{1-\frac{2}{\sqrt{5}}} = \frac{1}{\sqrt{5}-1} + \frac{2}{\sqrt{5}-2}$$

$$= \frac{\sqrt{5}+1}{(\sqrt{5}-1)(\sqrt{5}+1)} + \frac{2(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)}$$

$$= \frac{\sqrt{5}+1}{4} + 2(\sqrt{5}+2) = \frac{9\sqrt{5}+17}{4}$$

$$(3)$$
 $A+2B=x^2+3x+4\cdots$ ① , $3A-B=3x^2-5x-9\cdots$ ② $(A+2B)+2(3A-B)=(x^2+3x+4)+2(3x^2-5x-9)$ であるから $7A=7x^2-7x-14$ ゆえに $A=x^2-x-2$

これを①に代入すると

$$(x^2 - x - 2) + 2B = x^2 + 3x + 4$$
 ゆえに $B = 2x + 3$

	問1	問 2	問3	問 4	問 5	問 6	問7
正解	[8]	9	4	0	5	4	8

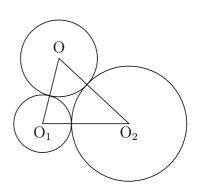
第2問 (1) 十の位は0 以外の3 通りあり,一の位は十の位の数以外の3 通りある. 積の法則により $3 \times 3 = 9$ (通り)

(2) 百の位は0以外の3通り、十の位,一の位は4通り、 積の法則により $3\times4\times4=48$ (通り)

	問8	問9
正解	2	9

第3問 $OO_1 = r + 1$, $OO_2 = r + 2$, $O_1O_2 = 1 + 2 = 3$

$$(1)$$
 $OO_2 = OO_1^2 + O_1O_2^2$ であるから $(r+2)^2 = (r+1)^2 + 3^2$


これを解いて r=3

(2) 余弦定理により

$$(r+2)^2 = 3^2 + (r+1)^2 - 2 \cdot 3(r+1)\cos 60^\circ$$

これを解いて $r=rac{3}{5}$

	問 10	問 11
正解	8	7

第 f 4 問 f 100 以下の自然数全体の集合を f U とし,f U の部分集合で,f 3 の倍数全体の集合を f A,f 4 の倍数全体の集合を f B とすると

$$A = \{3 \cdot 1, \ 3 \cdot 2, \ 3 \cdot 3, \ \cdots, \ 3 \cdot 33\}$$

$$B = \{4 \cdot 1, \ 4 \cdot 2, \ 4 \cdot 3, \ \cdots, \ 4 \cdot 25\}$$

$$A \cap B = \{12 \cdot 1, \ 12 \cdot 2, \ 12 \cdot 3, \ \cdots, \ 12 \cdot 8\}$$

ゆえに ,
$$n(U)=100$$
 , $n(A)=33$, $n(B)=25$, $n(A\cap B)=8$

(1)
$$P(A) = \frac{n(A)}{n(U)} = \frac{33}{100}$$

(2)
$$P(A \cap B) = \frac{n(A \cap B)}{n(U)} = \frac{8}{100} = \frac{2}{25}$$

(3)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 33 + 25 - 8 = 50$$

よって $P(A \cup B) = \frac{n(A \cup B)}{n(U)} = \frac{50}{100} = \frac{1}{2}$

(4)
$$P(A \cap \overline{B}) = P(A) - P(A \cap B) = \frac{33}{100} - \frac{2}{25} = \frac{1}{4}$$

	問 12	問 13	問 14	問 15
正解	3	1	5	2