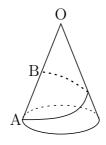
平成 19 年度 九州ルーテル学院大学 一般 II 期入学試験問題 数学 I (平成 19 年 3 月 3 日) 70 分

- |1| 次の各問に答えよ .
 - (1) $\left(\frac{3}{2}x\right)^2 imes \left(-\frac{1}{3}x\right)^3$ を簡単にせよ.
 - (2) $x=\sqrt{5}+\sqrt{2}$, $y=\sqrt{5}-\sqrt{2}$ とするとき , x^2+y^2 および x^3+y^3 の値を求めよ .
 - (3) $\frac{1}{\sin 150^\circ \cos 120^\circ}$ を簡単にせよ.
 - (4) |2x-1| < x+2 を解け.
 - (5) 2次不等式 $x^2-3x \le 0$ および $x^2-5x+4<0$ を両方満たす整数解の個数を求めよ.
- 2 2次関数 $f(x)=x^2+2mx+m+1$ を考える.どのような x に対しても f(x)>0 となる m の値の範囲を求めよ.
- $\boxed{\mathbf{3}} f(heta) = \sin^2 heta + \sqrt{2}\cos heta + 1$ とする .
 - (1) $\theta=60^\circ$ のとき $f(\theta)$ の値を求めよ .
 - (2) $0^{\circ} \le \theta \le 135^{\circ}$ のとき , $f(\theta)$ の最大値・最小値とそのときの θ の値を求めよ .
- 4 底円の直径が 10, 母線 OA の長さが 30 の直円錐がある. OA の中点を B としたとき, A から出発し円錐を一回りして B に至る最短距離を考える.



- (1) 直円錐の展開図を描き,最短経路を示せ.
- (2) 最短経路の長さを求めよ.

解答例

1 (1)
$$\left(\frac{3}{2}x\right)^2 \times \left(-\frac{1}{3}x\right)^3 = \frac{9}{4}x^2 \times \left(-\frac{1}{27}x^3\right) = -\frac{1}{12}x^5$$

(2)
$$x+y=(\sqrt{5}+\sqrt{2})+(\sqrt{5}-\sqrt{2})=2\sqrt{5}$$
 ,
$$xy=(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})=3$$

したがって
$$x^2 + y^2 = (x+y)^2 - 2xy$$

= $(2\sqrt{5})^2 - 2 \times 3 = 14$
 $x^3 + y^3 = (x+y)^3 - 3xy(x+y)$
= $(2\sqrt{5})^3 - 3 \times 3 \times 2\sqrt{5} = 22\sqrt{5}$

(3)
$$\frac{1}{\sin 150^{\circ} - \cos 120^{\circ}} = \frac{1}{\frac{1}{2} - \left(-\frac{1}{2}\right)} = \frac{1}{1} = 1$$

(4) |2x-1| < x+2 から -(x+2) < 2x-1 < x+2 ゆえに,次の連立不等式を解けばよい.

$$\begin{cases} -(x+2) < 2x - 1 \\ 2x - 1 < x + 2 \end{cases}$$

第1式を解いて $x > -\frac{1}{3}$ …①

第2式を解いて x < 3 ···②

① , ② の共通範囲を求めて
$$-rac{1}{3} < x < 3$$

(5)
$$x^2 - 3x \le 0$$
 を解いて $0 \le x \le 3$ …① $x^2 - 5x + 4 < 0$ を解いて $1 < x < 4$ …②

① , ② の共通範囲を求めて $1 < x \le 3$ よって , 整数解の個数は $2 \ge 3$ の 2 個

2 f(x) の係数について

$$D/4 = m^2 - 1 \cdot (m+1) = m^2 - m - 1$$

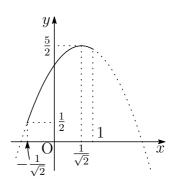
とする.

f(x) の x^2 の係数が正であるから,D < 0 が成り立てばよい.

ゆえに
$$m^2-m-1<0$$
 よって $\dfrac{1-\sqrt{5}}{2} < m < \dfrac{1+\sqrt{5}}{2}$

3 (1)
$$f(60^\circ) = \sin^2 60^\circ + \sqrt{2} \cos 60^\circ + 1$$

= $\left(\frac{\sqrt{3}}{2}\right)^2 + \sqrt{2} \times \frac{1}{2} + 1 = \frac{7}{4} + \frac{\sqrt{2}}{2}$



すなわち

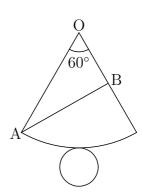
$$f(\theta) = -\left(x - \frac{1}{\sqrt{2}}\right)^2 + \frac{5}{2}$$

ゆえに $x=rac{1}{\sqrt{2}}$ のとき すなわち $heta=45^\circ$ のとき最大値 $rac{5}{2}$ をとり, $x=-rac{1}{\sqrt{2}}$ のとき すなわち $heta=135^\circ$ のとき最小値 $rac{1}{2}$ をとる.

$$\boxed{\mathbf{4}}$$
 (1) $\angle AOB = \frac{2\pi \cdot 5}{2\pi \cdot 30} \times 360^\circ = 60^\circ$ (答は右の図)

(2) △AOB に余弦定理を適用して

$$AB^{2} = OA^{2} + OB^{2} - 2OA \cdot OB \cos 60^{\circ}$$
$$= 30^{2} + 15^{2} - 2 \cdot 30 \cdot 15 \cdot \frac{1}{2}$$
$$= 15^{2} \cdot 3$$



ゆえに $AB = 15\sqrt{3}$