2007年度 九州東海大学 一般入学試験問題

数学(60分)平成19年2月3日

I 注意事項

- 1. 試験開始の合図があるまで,この問題冊子の中を見てはいけません。
- 2. 出題科目,ページおよび選択方法は,下表のとおりです。

出題科目	ページ	選択方法
数学 I ・数学 A	1~2	左の2科目のうちから1科目を選択し,
数学 II・数学 B	3~4	解答しなさい。

- 3. 解答用紙には解答欄以外に次の記入欄があるので,監督者の指示に従ってそれぞれ正しく記入し,マークしなさい。
 - ① 氏 名 欄 氏名を記入しなさい。
 - ② 受験番号 受験番号を記入し,さらにその下のマーク欄にマークしなさい。正しくマークされていない場合は,採点できないことがあります。
 - ③ 解答科目欄 解答する科目を1つ選び,科目の下の①にマークしなさい。 マークされていない場合,または,複数の科目にマークされている場合は,0点となります。
- 4. 試験終了後,問題冊子は持ち帰りなさい。

II 解答上の注意

1. 問題の文中の 1 , 2 3 などには,特に指示がないかぎり,数字 $(1 \sim 0)$,符号 (-) が入ります。1 , 2 , 3 , \cdots の一つ一つは,これらのいずれか一つに対応します。それらを解答用紙の1 , 2 , 3 , \cdots で示された解答欄にマークして答えなさい。

例1 1 2 3 に-12 と答えたいとき

			1	解		答		檌			
1	Θ	1	2	3	4	(5)	6	7	8	9	0
2	θ	1	2	3	4	(5)	6	7	8	9	0
3	θ	1	2	3	4	(5)	6	7	8	9	0

2. 分数形で解答する場合は,既約分数で答えなさい。符号は分子につけ分母につけてはいけません。

例 2 $\frac{4}{5}$ に $-\frac{3}{5}$ と答えたいときは $\frac{-3}{5}$ として

			1	解		答		檌			
4	Θ	1	2	3	4	(5)	6	7	8	9	0
5	θ	1	2	3	4	(5)	6	7	8	9	0
6	θ	1	2	3	4	5	6	7	8	9	0

数学 I・数学 A

				XX J	<u> </u>	×× <u> </u>	1					
Ι	次の	の中に最	も適っ	する答 <i>え</i>	えを下	の選択	限の	中から	選び	なさい	٥,	
	(1)	$x=rac{\sqrt{5}+1}{\sqrt{5}-1}$, y శ్రీ వి	$=\frac{V}{V}$	$\frac{\sqrt{5}-1}{\sqrt{5}+1}$	のと	き , x²	$+y^2$	= 1		$x^3 - y^3$	=	2 で
		1 の選択肢	1	5	2	7	3	9	4	11	5	13
		2 の選択肢	1	$2\sqrt{5}$	2	$6\sqrt{5}$	3	$7\sqrt{5}$	4	$8\sqrt{5}$	5	$9\sqrt{5}$
	(2)	aを定数とする。 数となるとき,			_				< 0	の解が [.]	すべ	ての実
		3 の選択肢	_	a < - $a < -$			_	-4 < a $a < -1$	< 1	3 -	-4 <	a < 0
	(3)	$0^{\circ} \le x < 90^{\circ} \succeq 4 \\ \boxed{4} \sin^2 x + $								_	る。	
		4 の選択肢	1	-2	2	-1	3	1	4	2	5	3
		5 の選択肢	1	-2	2	-1	3	1	4	2	5	3
		6 の選択肢	1	0°	2	30°	3	45°	4	60°	5	90°
	(4)	6人を3人ずつ 分ける方法は も1人は入って	8 j	通りある	ら。た	だし,						
		7 の選択肢	1	10	2	15	3	20	4	30	5	45
		8 の選択肢	1	31	2	32	3	41	4	62	(5)	64

II	赤玉 4 個 , 白玉 3 個 , 青玉 2 個が入っている袋がある。このとき , 次の問いに答えなさい。
	(1) この袋の中から 3 個の玉を同時に取り出すとき,
	(\mathcal{P}) 取り出した玉の色が 1 種類になる確率は $\cfrac{9}{10$ 11
	(au) 取り出した玉の色が 3 種類になる確率は 12 である。
	(ウ) 取り出した玉の色が 2 種類になる確率は 14 15 である。 16 17
	$(t I)$ 取り出される青玉の個数の期待値は $egin{array}{c c} \hline 18 \\ \hline \hline 19 \\ \hline \end{array}$ 個である。
	(2) この袋から3個の玉を同時に取り出し,玉を調べてから元に戻すことを3 回行うとき,
	(\mathcal{P}) 取り出した玉の色について , 3 回のうち 2 回が 3 種類 , 1 回が 1 種類
	になる確率は $\begin{array}{c c} 20 \\ \hline \hline 21 & 22 & 23 \\ \hline \end{array}$ である。
	(イ) 各回で取り出した青玉の個数がすべて異なる確率は 24 25 26
	である。
III	a を実数の定数とする。 2 次関数 $f(x) = x^2 + ax + a + 3$ について,次の問いに答えなさい。
	(1) 放物線 $y=f(x)$ の軸が直線 $x=2$ のとき, $a=oxed{27}$ 28 であり,
	頂点の y 座標は 29 30 である。
	f(x) < 0 を満たす x が存在するとき,
	a の値の範囲は $a<-\mid 31\mid$, $\mid 32\mid < a$ である。
	f(x) < 0 を満たす整数 x が 1 , 2 だけのとき ,
	$(3) \ f(x) < 0$ を満たす整数 x が 1 , 2 だけのとき , a の値の範囲は 33 34 $\leq a < 35$ 36 である。 $(4) \ 4 < a < 10$ とする。このとき , 放物線 $y = f(x)$ の頂点の x 座標 p のとり
	(3) $f(x) < 0$ を満たす整数 x が 1 , 2 だけのとき , a の値の範囲は 33 34 $\leq a < 35$ 36 である。 37 でかる。 37 である。 37 でかる。 37
	$(3) \ f(x) < 0$ を満たす整数 x が 1 , 2 だけのとき , a の値の範囲は 33 34 $\leq a < 35$ 36 である。 $(4) \ 4 < a < 10$ とする。このとき , 放物線 $y = f(x)$ の頂点の x 座標 p のとり

数学 II・数学 B

L	次の	り__の中に最	も週	9 6答	えをし	・の選択	代月文 <i>U</i> .	ノ中から	選び	いなるい	۱,	
	(1)	$2次方程式 2x^2- する2次方程式 である。$					•					
		1 の選択肢	1	-4	2	-3	3	-1	4	1	(5)	3
		2 の選択肢	1	-6	2	-4	3	6	4	8	5	11
	(2)	等差数列の第6	項が	-14 ,	初項7	から第	10 項	までの	和が	-1507	である	。 とき ,
		第 3 項は0	であり),第1	1項#	から第2	20 項	までの	和は	4 7	ある	0
		3 の選択肢	1	10	2	11	3	12	4	13	5	14
		4 の選択肢	1	10	2	30	3	50	4	70	5	90
	(3)	a を定数とする 3 であるとき ,	_								る最ん	小値が
		5 の選択肢	1	1	2	2	3	3	4	4	(5)	5
		6 の選択肢	1	5	2	6	3	7	4	8	5	9
	(4)	OA = 3, $OB = 4$										
		四分 てる 占た (、レス	~ ()	Λ	. (10	-		- ~	h	7 7	であり,
		内分する点を $ \overrightarrow{OC} = \boxed{8}$	である		A = c	<i>t</i> , OD	$= v \epsilon$	<u> </u>	_ , a	· <i>u</i> =	'	. 65.5
		\longrightarrow $$			A = a		= v c	- 9 중 6	_ , a _	-0 =	5	0
		$ \overrightarrow{OC} = \boxed{8}$	である ①									
		OC = 8 7 7 の選択肢	である ①	-4 -	2	-3	3	-2	4	-1	5	0

 ${f II}$ $0 \le x \le rac{\pi}{2}$ のとき,関数 $f(x) = 5\cos^2 x + 6\sin x\cos x - 3\sin^2 x$ について,次の問いに答えなさい。

$$(1)$$
 $f(x)$ を $\sin 2x$, $\cos 2x$ で表すと ,
$$f(x) = \boxed{9} \sin 2x + \boxed{10} \cos 2x + \boxed{11}$$
 である。

$$f(x)$$
 は,
$$f(x)$$
 は,
$$f(x) = \boxed{12}\sin(2x + \alpha) + \boxed{13}$$
 と表すことができる。ただし, α は,
$$\sin\alpha = \boxed{\frac{14}{15}}, \cos\alpha = \boxed{\frac{16}{17}}, 0 < \alpha < \frac{\pi}{2}$$
 を満たす。

$$(3)$$
 $f(x)$ は,
$$x=\frac{\pi}{18}-\frac{\alpha}{19}$$
 のとき,最大値 20 ,
$$x=\frac{\pi}{21}$$
 のとき,最小値 -22 をとる。

$$(4)$$
 $f(x)$ が最大になるとき , $\sin 2x = \frac{23}{24}$, $\cos 2x = \frac{25}{26}$ である。

- **III** k を定数とする。円 $C: x^2 + y^2 4 + 2k(x 3y + 2) = 0$ について,次の問いに答えなさい。

 - (2) 円Cはkの値に関係なく定点 A $\left(32 33 , 34 \right)$ $\left(35 36 , 37 38 \right)$ を通る。
 - (3) 円Cの中心 Pの座標は (39)k, 40k) と表せるから, P は直線 y=41 42 x 上にある。また,円Cの半径は,

$$k=rac{43}{44}$$
 のとき最小値 $45\sqrt{4647}$ をとる。

(4) 円 C と x 軸が接するとき, $k = \boxed{49}$ である。

解答例

数学 I・数学 A

I (1)
$$x + y = \frac{\sqrt{5} + 1}{\sqrt{5} - 1} + \frac{\sqrt{5} - 1}{\sqrt{5} + 1} = \frac{(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2}{(\sqrt{5} + 1)(\sqrt{5} - 1)}$$
$$= \frac{(5 + 2\sqrt{5} + 1) + (5 - 2\sqrt{5} + 1)}{5 - 1} = 3$$
$$x - y = \frac{\sqrt{5} + 1}{\sqrt{5} - 1} - \frac{\sqrt{5} - 1}{\sqrt{5} + 1} = \frac{(\sqrt{5} + 1)^2 - (\sqrt{5} - 1)^2}{(\sqrt{5} + 1)(\sqrt{5} - 1)}$$
$$= \frac{(5 + 2\sqrt{5} + 1) - (5 - 2\sqrt{5} + 1)}{5 - 1} = \sqrt{5}$$
$$xy = \frac{\sqrt{5} + 1}{\sqrt{5} - 1} \times \frac{\sqrt{5} - 1}{\sqrt{5} + 1} = 1$$

したがって

$$x^2+y^2=(x+y)^2-2xy=3^2-2\cdot 1=\mathbf{7}$$

さらに,上式から

$$x^3 - y^3 = (x - y)\{(x^2 + y^2) + xy\} = \sqrt{5}(7 + 1) = 8\sqrt{5}$$

(2) 2次不等式の判別式を D とすると

$$D/4 = (-2)^2 - a(a+3) = -(a+4)(a-1)$$

 x^2 の係数および D の符号について , a<0 かつ D<0 であるから

$$-(a+4)(a-1) < 0$$
$$(a+4)(a-1) > 0$$
$$a < -4 \quad 1 < a$$

ゆえに a < -4, 1 < a

これとa < 0の共通範囲を求めて a < -4

(3) $\tan x = \frac{\sin x}{\cos x}$ であるから , 与えられた等式は

よって
$$3 \cdot \frac{\sin x}{\cos x} = 2\cos x$$
$$3\sin x = 2\cos^2 x$$
$$3\sin x = 2(1 - \sin^2 x)$$

ゆえに
$$2\sin^2 x + 3\sin x - 2 = 0$$

 $(\sin x + 2)(2\sin x - 1) = 0$

$$0^{\circ} \le x < 90^{\circ}$$
 より $0 \le \sin x < 1$ であるから $\sin x = \frac{1}{2}$ よって $x = 30^{\circ}$

(4) 6人を3人ずつ2組に分ける方法は,Xに3人,Yに3人の2つの組に分けることを考え,X,Yの区別をなくすことで求めることができる。

$$\frac{{}_{6}C_{3}}{2!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} \times \frac{1}{2} = \mathbf{10}$$

6 人を A , B の 2 組に分ける方法は $2^6 = 64$ (通り) これから A だけに入る場合と B だけに入る場合を除いて

$$64-2=62$$
 (通り)

 \mathbf{II} (1)(ア) 取り出した玉の色が1 種類であるのは,3 個とも赤玉または3 個とも白玉のときであり,これらは互いに排反であるから,求める確率は

$$\frac{{}_{4}C_{3}+{}_{3}C_{3}}{{}_{9}C_{3}}=\frac{\mathbf{5}}{\mathbf{84}}$$

(イ) 取り出した玉の色が3種類であるのは,赤玉,白玉,青玉がそれぞれ 1個のときであるから,求める確率は

$$\frac{{}_{4}C_{1} \times {}_{3}C_{1} \times {}_{2}C_{1}}{{}_{9}C_{3}} = \frac{24}{84} = \frac{2}{7}$$

(ウ)(ア)と(イ)の余事象の確率であるから

$$1 - \left(\frac{5}{84} + \frac{24}{84}\right) = \frac{55}{84}$$

(エ) 袋の中から個の玉を取り出すとき

青玉
$$0$$
 個の確率は $\frac{{}_{7}C_{3}}{{}_{9}C_{3}}=\frac{35}{84}=\frac{5}{12}$ 青玉 1 個の確率は $\frac{{}_{2}C_{1}\times{}_{7}C_{2}}{{}_{9}C_{3}}=\frac{42}{84}=\frac{1}{2}$ 青玉 2 個の確率は $\frac{{}_{2}C_{2}\times{}_{7}C_{1}}{{}_{9}C_{3}}=\frac{7}{84}=\frac{1}{12}$

したがって,青玉の個数の期待値は

$$0 \times \frac{5}{12} + 1 \times \frac{1}{2} + 2 \times \frac{1}{12} = \frac{2}{3}$$

(2)
$$(\mathcal{P})_{3}C_{2}\left(\frac{2}{7}\right)^{2} \times \frac{5}{84} = \frac{5}{343}$$

(1)
$$3! \times \frac{5}{12} \times \frac{1}{2} \times \frac{1}{12} = \frac{5}{48}$$

$$m{III}$$
 (1) $y=x^2+ax+a+3$ の軸の方程式は $x=-rac{a}{2\cdot 1}=-rac{a}{2}$ であるから $-rac{a}{2}=2$ すなわち $m{a}=-4$

このとき
$$y = x^2 - 4x - 1 = (x - 2)^2 - 5$$

したがって,頂点のy座標は -5

(2) x^2 の係数は正であるから , f(x) < 0 を満たす x が存在するための条件は D > 0

したがって
$$a^2-4\cdot 1(a+3)>0$$
 $a^2-4a-12>0$ ゆえに $(a+2)(a-6)>0$ よって $a<-2,\ 6< a$

(3) f(x) < 0 を満たす整数 x が 1, 2 だけである条件は

$$f(0) \ge 0$$
, $f(1) < 0$, $f(2) < 0$, $f(3) \ge 0$

であるから

したがって,共通する a の値の範囲を求めて $-3 \leqq a < -rac{7}{3}$

(4) 頂点の x 座標は p は, $p=-\frac{a}{2}$ であるから 4 < a < 10 のとき $-5 < -\frac{a}{2} < -2$ ゆえに $-5 <math>-2 \le x \le 2$ において,x=2 で最大,x=-2 で最小となる. よって,f(2)=22 より $2^2+a\cdot 2+a+3=22$ すなわち a=5 $f(x)=x^2+5x+8$ であるから,最小値は

$$f(-2) = (-2)^2 + 5 \cdot (-2) + 8 = 2$$

			1	解		答		樨			
1	Θ	1	2	3	4	(5)	6	7	8	9	0
2	θ	1	2	3	4	(5)	6	7	8	9	0
3	θ	1	2	3	4	(5)	6	7	8	9	0
4	Θ	1	2	3	4	(5)	6	7	8	9	0
5	Θ	1	2	3	4	5	6	7	8	9	0
6	θ	1	2	3	4	(5)	6	7	8	9	0
7	θ	1	2	3	4	(5)	6	7	8	9	0
8	θ	1	2	3	4	(5)	6	7	8	9	0
9	θ	1	2	3	4	5	6	7	8	9	0
10	θ	1	2	3	4	(5)	6	7	8	9	0
11	Θ	1	2	3	4	(5)	6	7	8	9	0
12	Θ	1	2	3	4	(5)	6	7	8	9	0
13	Θ	1	2	3	4	(5)	6	7	8	9	0
14	\ominus	1	2	3	4	5	6	7	8	9	0
15	\ominus	1	2	3	4	5	6	7	8	9	0
16	\bigcirc	1	2	3	4	(5)	6	7	8	9	0
17	\ominus	1	2	3	4	(5)	6	7	8	9	0
18	θ	1)	2	3	4	(5)	6	7	8	9	0
19	θ	1)	2	3	4	(5)	6	7	8	9	0
20	Θ	1)	2	3	4	5	6	7	8	9	0
21	Θ	1)	2	3	4	(5)	6	7	8	9	0
22	Θ	1)	2	3	4	(5)	6	7	8	9	0
23	θ	1	2	3	4	(5)	6	7	8	9	0
24	θ	1	2	3	4	5	6	7	8	9	0
25	θ	1	2	3	4	(5)	6	7	8	9	0
26	θ	1	2	3	4	(5)	6	7	8	9	0
27	θ	1	2	3	4	(5)	6	7	8	9	0
28	θ	1	2	3	4	(5)	6	7	8	9	0
29	θ	1)	2	3	4	(5)	6	7	8	9	0
30	θ	1	2	3	4	5	6	7	8	9	0

			1	解		答		榻			
31	Θ	1	2	3	4	(5)	6	7	8	9	0
32	Θ	1	2	3	4	(5)	6	7	8	9	0
33	Θ	1	2	3	4	(5)	6	7	8	9	0
34	Θ	1	2	3	4	(5)	6	7	8	9	0
35	θ	1)	2	3	4	(5)	6	7	8	9	0
36	θ	1)	2	3	4	(5)	6	7	8	9	0
37	θ	1	2	3	4	(5)	6	7	8	9	0
38	θ	1	2	3	4	(5)	6	7	8	9	0
39	θ	1	2	3	4	5	6	7	8	9	0
40	θ	1	2	3	4	(5)	6	7	8	9	0
41	Θ	1	2	3	4	(5)	6	7	8	9	0
42	Θ	1)	2	3	4	5	6	7	8	9	0
43	Θ	1	2	3	4	(5)	6	7	8	9	0

解答例

数学II・数学B

I (1) 2次方程式 $2x^2 + x + 3 = 0$ の解と係数の関係から

$$\alpha + \beta = -\frac{1}{2}, \quad \alpha\beta = \frac{3}{2}$$
ここで $(2\alpha - 1) + (2\beta - 1) = 2(\alpha + \beta) - 2$

$$= 2 \times \left(-\frac{1}{2}\right) - 2 = -3$$
 $(2\alpha - 1)(2\beta - 1) = 4\alpha\beta - 2(\alpha + \beta) + 1$

$$= 4 \times \frac{3}{2} - 2 \times \left(-\frac{1}{2}\right) + 1 = 8$$

よって $2\alpha-1$, $2\beta-1$ を解とする 2 次方程式の 1 つは $x^2-(-3)x+8=0$ すなわち $x^2+3x+8=0$

(2) 等差数列 $\{a_n\}$ の初項を a , 公差を d とすると 第 6 項が -14 であるから a+5d=-14 ····① 初項から第 10 項までの和が -150 であるから

$$\frac{1}{2}$$
·10(2a+9d) = -150 すなわち $2a+9d=-30$ ···②

① , ② を解いて a=-24 , d=2 よって一般項は $a_n=-24+(n-1)\cdot 2=2n-26$ また , 0 になる項は 2n-26=0 これを解いて 第 13 項 $a_{11}=-4$, $a_{20}=14$ であるから , 第 11 項から第 20 項までの和は $\frac{1}{2}\cdot 10(-4+14)=\mathbf{50}$

(3)
$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

 $f'(x) = 0$ とすると $x = -1$, 1

f(x) の増減表は,次のようになる.

\overline{x}	0		1		2
f'(x)			0	+	
f(x)	a	/	極小 a - 2	7	a+2

よって,この関数は x=1 で最小値をとるので

$$a-2=3$$
 ゆえに $a=5$

このとき,最大値は a+2=5+2=7

(4) \vec{a} と \vec{b} のなす角を θ とすると

$$\cos \theta = \frac{\text{OA}^2 + \text{OB}^2 - \text{AB}^2}{2\text{OA} \cdot \text{OB}} = \frac{3^2 + 4^2 - (\sqrt{33})^2}{2 \cdot 3 \cdot 4} = -\frac{1}{3}$$

ゆえに
$$\vec{a}\cdot\vec{b} = |\vec{a}||\vec{b}|\cos\theta = 3\cdot4\cdot\left(-\frac{1}{3}\right) = -4$$

点 C は AB を 1:2 に内分する点であるから

$$\overrightarrow{\mathrm{OC}} = \frac{1}{3}(2\vec{a} + \vec{b})$$
 すなわち $|\overrightarrow{\mathrm{OC}}| = \frac{1}{3}|2\vec{a} + \vec{b}|$

ここで
$$|2\vec{a} + \vec{b}|^2 = (2\vec{a} + \vec{b}) \cdot (2\vec{a} + \vec{b})$$

= $4|\vec{a}|^2 + 4\vec{a} \cdot \vec{b} + |\vec{b}|^2$
= $4 \cdot 3^2 + 4 \cdot (-4) + 4^2 = 36$

ゆえに
$$|2\vec{a} + \vec{b}| = 6$$

したがって
$$|\overrightarrow{\mathrm{OC}}| = \frac{1}{3}|2\overrightarrow{a} + \overrightarrow{b}| = \frac{1}{3} \times 6 = \mathbf{2}$$

$$\mathbf{II}$$
 (1) $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$, $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$, $\sin x \cos x = \frac{1}{2}\sin 2x$ であるから

$$f(x) = 5\cos^2 x + 6\sin x \cos x - 3\sin^2 x$$

= $5 \times \frac{1}{2}(1 + \cos 2x) + 6 \times \frac{1}{2}\sin 2x - 3 \times \frac{1}{2}(1 - \cos 2x)$
= $3\sin 2x + 4\cos 2x + 1$

$$(2) \sin \alpha = \frac{4}{5}, \cos \alpha = \frac{3}{5}$$
 とおくと $\left(0 < \alpha < \frac{\pi}{2}\right)$

$$f(x) = 3\sin 2x + 4\cos 2x + 1$$

$$= 5\left(\frac{3}{5}\sin 2x + \frac{4}{5}\cos 2x\right) + 1$$

$$= 5(\sin 2x \cos \alpha + \cos 2x \sin \alpha) + 1$$

$$= 5\sin(2x + \alpha) + 1$$

$$(3) \ 0 \le x \le \frac{\pi}{2} \text{ より} \quad 0 \le 2x \le \pi$$
 すなわち
$$\alpha \le 2x + \alpha \le \pi + \alpha$$

したがって , f(x) は

$$2x+lpha=rac{\pi}{2}$$
 すなわち $x=rac{\pi}{4}-rac{lpha}{2}$ のとき最大値をとり, $2x+lpha=\pi+lpha$ すなわち $x=rac{\pi}{2}$ のとき最小値をとる.

よって 最大値は
$$5\sin\frac{\pi}{2}+1=\mathbf{6}$$
 最小値は $5\sin(\pi+\alpha)+1=-5\sin\alpha+1$
$$=-5\times\frac{4}{5}+1=-\mathbf{3}$$

(4) f(x) が最大となるのは , $2x+lpha=rac{\pi}{2}$ のときであるから

$$\sin 2x = \sin\left(\frac{\pi}{2} - \alpha\right) = \cos \alpha = \frac{3}{5}$$
$$\cos 2x = \cos\left(\frac{\pi}{2} - \alpha\right) = \sin \alpha = \frac{4}{5}$$

$$egin{aligned} \mathbf{III} & (1) \ egin{aligned} & \mathbf{P} \, C : x^2 + y^2 - 4 + 2k(x - 3y + 2) = 0 \, ext{ が原点を通るから} \\ & x = 0 \ , \, y = 0 \, ext{を代入して} \quad -4 + 4k = 0 \quad ext{すなわち} \quad k = 1 \\ & \texttt{このとき} \qquad x^2 + y^2 + 2x - 6y = 0 \\ & ext{ゆえに} \qquad (x+1)^2 + (y-3)^2 = 10 \\ & ext{よって円} \, C \, ext{の中心は} \, (-1, \ 3) \ , \, ext{ 半径は} \, \sqrt{10} \end{aligned}$$

(2) $x^2 + y^2 - 4 + 2k(x - 3y + 2) = 0$ · · · ① が k についての恒等式となるための条件は

$$x^2+y^2-4=0$$
 , $x-3y+2=0$ これを解いて $(x,\ y)=(-2,\ 0)$, $\left(rac{8}{5},\ rac{6}{5}
ight)$

このとき,①はkの値にかかわらず成り立つ.

したがって , 円 C は , k の値にかかわらず定点 $(-2,\ 0)$, $\left(rac{8}{5},\ rac{6}{5}
ight)$ を通る .

$$x^2+y^2-4+2k(x-3y+2)=0$$
 ゆえに $(x+k)^2+(y-3k)^2=10k^2-4k+4$ ・・・② よって,中心 P の座標は $(-k, 3k)$ $x=-k$, $y=3k$ とおく.これから P は直線 $y=-3x$ 上にある.また, $10k^2-4k+4=10\left(k-\frac{1}{5}\right)^2+\frac{18}{5}$ であるから 半径は, $k=\frac{1}{5}$ のとき最小値 $\sqrt{\frac{18}{5}}=\frac{3\sqrt{10}}{5}$ をとる.

(4) 円 C と x 軸が接するとき,円 C の中心の y 座標と半径について

② より
$$|3k| = \sqrt{10k^2 - 4k + 4}$$
 ゆえに $9k^2 = 10k^2 - 4k + 4$ すなわち $k^2 - 4k + 4 = 0$ よって $k = 2$

			1	解		答		欄							1	解		答		欄			
1	θ	1	2	3	4	5	6	7	8	9	0	31	θ	1	2	3	4	(5)	6	7	8	9	0
2	Θ	1	2	3	4	(5)	6	7	8	9	0	32	θ	1	2	3	4	(5)	6	7	8	9	0
3	θ	1	2	3	4	(5)	6	7	8	9	0	33	\ominus	1	2	3	4	(5)	6	7	8	9	0
4	θ	1	2	3	4	(5)	6	7	8	9	0	34	θ	1	2	3	4	(5)	6	7	8	9	0
5	θ	1	2	3	4	5	6	7	8	9	0	35	θ	1	2	3	4	(5)	6	7	8	9	0
6	θ	1	2	3	4	(5)	6	7	8	9	0	36	θ	1	2	3	4	5	6	7	8	9	0
7	θ	1	2	3	4	(5)	6	7	8	9	0	37	θ	1	2	3	4	(5)	6	7	8	9	0
8	θ	1	2	3	4	(5)	6	7	8	9	0	38	θ	1	2	3	4	5	6	7	8	9	0
9	θ	1	2	3	4	(5)	6	7	8	9	0	39	θ	1	2	3	4	(5)	6	7	8	9	0
10	Θ	1	2	3	4	(5)	6	7	8	9	0	40	θ	1	2	3	4	(5)	6	7	8	9	0
11	Θ	1	2	3	4	(5)	6	7	8	9	0	41	Θ	1	2	3	4	(5)	6	7	8	9	0
12	Θ	1	2	3	4	5	6	7	8	9	0	42	θ	1	2	3	4	(5)	6	7	8	9	0
13	Θ	1	2	3	4	(5)	6	7	8	9	0	43	θ	1	2	3	4	(5)	6	7	8	9	0
14	Θ	1	2	3	4	(5)	6	7	8	9	0	44	θ	1	2	3	4	5	6	7	8	9	0
15	Θ	1	2	3	4	5	6	7	8	9	0	45	θ	1	2	3	4	(5)	6	7	8	9	0
16	Θ	1	2	3	4	(5)	6	7	8	9	0	46	θ	1	2	3	4	(5)	6	7	8	9	0
17	Θ	1	2	3	4	5	6	7	8	9	0	47	θ	1	2	3	4	(5)	6	7	8	9	0
18	Θ	1	2	3	4	(5)	6	7	8	9	0	48	θ	1	2	3	4	5	6	7	8	9	0
19	θ	1	2	3	4	(5)	6	7	8	9	0	49	θ	1	2	3	4	(5)	6	7	8	9	0
20	θ	1	2	3	4	(5)	6	7	8	9	0												
21	θ	1	2	3	4	(5)	6	7	8	9	0												
22	Θ	1)	2	3	4	(5)	6	7	8	9	0												
23	Θ	1	2	3	4	(5)	6	7	8	9	0												
24	Θ	1)	2	3	4	5	6	7	8	9	0												
25	θ	1	2	3	4	(5)	6	7	8	9	0												
26	θ	1	2	3	4	5	6	7	8	9	0												
27	0	1	2	3	4	(5)	6	7	8	9	0												
28	θ	1	2	3	4	(5)	6	7	8	9	0												
29	θ	1	2	3	4	(5)	6	7	8	9	0												
30	θ	1	2	3	4	(5)	6	7	8	9	0												