九州看護福祉大学

平成 20 年度入学試験問題

数 学 I・A

(看護学科)

本学会場

平成20年2月3日実施

注意事項

- 1. 「始め」の合図があるまで問題用紙を開かないこと。
- 2. 受験票、筆記用具 (鉛筆・消しゴム)、時計 (時間表示機能のみ) 以外の物は机の下 に置くこと。
- 3. 問題用紙は、表紙を含めて3ページあり、これとは別に解答用紙が、1枚ある。
- 4. 受験番号と氏名は、監督者の指示に従って記入すること。 (解答用紙の受験番号と氏名欄はすべて記入すること。)
- 5. 質問事項等がある場合や特別な事情 (病気・トイレ等) のある場合には、その場で 手を挙げて待機し、監督者の指示に従うこと。
- 6. 原則として、試験終了まで退出できない。
- 7. 試験終了後は、監督者の指示があるまで、各自の席で待機すること。
- 8. 解答用紙を回収した後、問題用紙は持ち帰ること。
- 9. 試験会場では、携帯電話・PHS・ポケベル・時計のアラーム等の電源を切っておくこと。

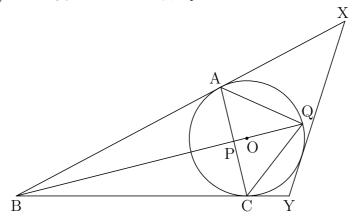
平成 20 年度 九州看護福祉大学一般入学選抜試験 (数学 I・A) 看護学科

- $\boxed{1}$ 次の各問いに答えよ。
 - 問 1. 放物線 $y=x^2+ax+b$ が点 $(1,\ 2)$ を通り,直線 y=x+1 に接するとき,定数 a ,b の値は a= ア ,b= イ である。

問 $3.~x^2-2x-1=0$ の解を α , β $(\alpha<\beta)$ とするとき , $\frac{\beta^2}{\alpha^2}+\frac{\alpha^2}{\beta^2}=$ $\boxed{$ オ である。

- 問 4. (1) 実数 x についての命題「 $x^2=2 \implies x \neq 1$ 」の対偶は「b 一 一 」である。

- 2 次の各問いに答えよ。
 - なお,解答は答えだけでなく,答えを導くまでの手順がわかるように書くこと。
 - 問 A. \triangle XBYに内接する円 O と,BX,BY との接点をそれぞれ A,C とし,AC と BO の交点を P,BO の延長と円 O の交点を Q とする。 \angle AQC = θ , $\sin\theta=a$,OQ = r とする。
 - (1) ACの長さを*aとr*で表せ。
 - (2) OP **の**長さを a と r で表せ。



- 問 B. A, Bの2人がそれぞれさいころを投げてからじゃんけんをする。Aは奇数の目が出たらグー,2の目が出たらチョキ,4または6の目が出たらパーを出す。Bは1の目が出たらグー,2または3の目が出たらチョキ,4以上の目が出たら,パーを出す。次の確率を求めよ。
 - (1) B が A に勝つ確率を求めよ。
 - (2) A と B があいこになる確率を求めよ。

解答例

1 問 1. 放物線
$$y=x^2+ax+b$$
 は点 $(1,\ 2)$ を通るから
$$2=1^2+a\cdot 1+b\quad$$
 ゆえに $b=1-a\quad\cdots$ ①
$$y=x^2+ax+b$$
 と $y=x+1$ から y を消去して整理すると $x^2+(a-1)x+b-1=0$

この方程式は,重解をもつので,係数について

$$(a-1)^2 - 4(b-1) = 0$$
 ... ②

①を②に代入して,整理すると

$$a^2 + 2a + 1 = 0$$
 これを解いて $a = -1$

a=-1を①に代入して b=2

問 2.
$$a^2-6a+8<0$$
 を解いて $2< a<4$ したがって,整数 a の値は $a=3$ $a=3$ を $x^2-x+a-4=0$ に代入して $x^2-x-1=0$ この 2 次方程式の解は $x=\frac{1\pm\sqrt{5}}{2}$ このうちの正の解が α であるから $\alpha=\frac{1+\sqrt{5}}{2}$ $2<\sqrt{5}<3$ であるから $\frac{1+2}{2}<\frac{1+\sqrt{5}}{2}<\frac{1+3}{2}$ したがって, α の整数部分は 1 α の小数部分は $\alpha-1=\frac{1+\sqrt{5}}{2}-1=\frac{\sqrt{5}-1}{2}$ (答) ウ. 1 エ. $\frac{\sqrt{5}-1}{2}$

問 3.
$$x^2-2x-1=0$$
 を解いて $x=1\pm\sqrt{2}$ ゆえに $\alpha=1-\sqrt{2}$, $\beta=1+\sqrt{2}$ したがって , $\alpha+\beta=2$, $\alpha\beta=-1$ であるから
$$\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta=2^2-2\cdot(-1)=6$$
 よって
$$\frac{\beta^2}{\alpha^2}+\frac{\alpha^2}{\beta^2}=\frac{\beta^4+\alpha^4}{\alpha^2\beta^2}=\frac{(\alpha^2+\beta^2)^2-2(\alpha\beta)^2}{(\alpha\beta)^2}=\frac{6^2-2\cdot(-1)^2}{(-1)^2}=34$$

(答) **オ**. 34

問 4. (答) カ. x = 1 キ. $x^2 \neq 2$ ク. $x + y \geq 5$ ケ. x > 2 または $y \geq 3$

$$oxed{2}$$
 問 A. (1) 正弦定理により $\dfrac{ ext{AC}}{\sin heta}=2r$

よって
$$AC = 2r\sin\theta = 2ra$$

(2)
$$AP = PC = \frac{1}{2}AC = \frac{1}{2} \cdot 2ra = ra$$

BO と円の交点を R , $\mathrm{OP}=x$ とおくと

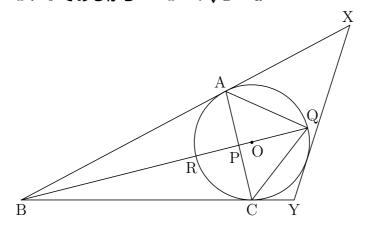
方べきの定理により RP·PQ = AP·PC

ゆえに
$$(r-x)(r+x) = ra \cdot ra$$

整理して
$$r^2 - x^2 = r^2 a^2$$

したがって
$$x^2 = r^2(1 - a^2)$$

したがって
$$x^2 = r^2(1-a^2)$$
 $x > 0$ であるから $x = r\sqrt{1-a^2}$



問 B. A, Bのグー, チョキ, パーを出す確率は

	グー	チョキ	パー
A	$\frac{3}{6}$	$\frac{1}{6}$	$\frac{2}{6}$
В	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$

$$(1)$$
 B がグーで勝つ確率は $\dfrac{1}{6} imes\dfrac{1}{6}=\dfrac{1}{36}$ B がチョキで勝つ確率は $\dfrac{2}{6} imes\dfrac{2}{6}=\dfrac{4}{36}$ B がパーで勝つ確率は $\dfrac{3}{6} imes\dfrac{3}{6}=\dfrac{9}{36}$ よって,求める確率は $\dfrac{1}{36}+\dfrac{4}{36}+\dfrac{9}{36}=\dfrac{7}{18}$