平成19年度 熊本リハビリテーション学院一般後期入学試験問題 数学 I・数学 A(平成 19 年 2 月 17 日)

- 第1問 2 次関数 $y=ax^2+bx+c$ のグラフを,x 軸方向に-2,y 軸方向に1 だけ平行 移動させたところ, $y=x^2$ のグラフが得られた。次の〔問1〕 \sim [問5]に適 するものを ① ~ ① から選べ。
 - (1) a の値は [問 1] , b の値は [問 2] , c の値は [問 3] である。
 - (2) 2次不等式 $ax^2+bx+c<0$ の解は $\fbox{[問4]}< x<$ $\fbox{[問5]}$ である。

- 第2問 1 辺の長さが2の正四面体 ABCD において,辺 BC の中点を M とする。次の $[\ egin{aligned} egin{aligned\\ egin{aligned} egin{aligned$
 - (1) AM の長さは[問6]である。
 - (2) $\angle AMD = \alpha$ とするとき , $\sin \alpha = |$ [問7] である。
 - (3) $\triangle AMD$ の面積 S は S = [問 8] である。

第3問	1 つのコインを 4 回投げるとき,次の $oldsymbol{igl[問 9 igr]} \sim oldsymbol{igl[問 11 igr]}$ に適するものを $oldsymbol{igl[}$ \sim
	$\stackrel{\bigcirc}{0}$ から選べ。

- (1) 表がちょうど2回だけ出る場合は[問9]通りある。
- (2) 表がちょうど3回だけ出る確率は[問10]である。
- (3) 表が1回出るたびに,100円の賞金が出る。4回投げ終わったとき,得られる賞金総額の期待値は[問11]円である。

第4問 次の[問12]~[問15]に適するものを1~0から選べ。

- (1) 4個の箱に合わせて 21 個のボールが入っている。このとき,どれか 1 つの箱には k 個以上入っていることは真であるが,k+1 個以上入っているということは真ではない。 k= [問 12] である。
- (2) 自然数 m , n について , 積 mn が自然数 3 で割り切れるならば m [問 13] n が 3 で割り切れる。
- (3) 自然数 n が 2 [問 14] 3 で割り切れることは , n が 6 で割り切れるための必要十分条件である。
- (4) 自然数 m , n について , 積 mn が偶数であることは , m が偶数であるため の [問 15] である。
- ① かつ ② または ③ 必要条件 ④ 十分条件 ⑤ 対偶 ⑥ 4 ⑦ 5 8 6 9 7 0 0

解答例

第1問 (1) $y=x^2$ のグラフを x 軸方向に 2 , y 軸方向に -1 だけ平行移動したものは $y=(x-2)^2-1$ すなわち $y=x^2-4x+3$ である . よって , a=1 , b=-4 , c=3

(2) (1) の結果から,2 次不等式 $x^2-4x+3<0$ の解は,左辺を因数分解して (x-1)(x-3)<0 これを解いて 1< x < 3

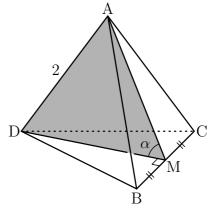
	問1	問 2	問3	問4	問5
正解	2	7	6	2	6
配点	7点	7点	7点	6点	6点

第2問 (1) AM = DM = BD sin $60^{\circ} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$

(2) △AMD に余弦定理を適用して

$$\cos \alpha = \frac{AM^2 + DM^2 - AD^2}{2AM \cdot DM}$$
$$= \frac{(\sqrt{3})^2 + (\sqrt{3})^2 - 2^2}{2\sqrt{3}\sqrt{3}}$$
$$= \frac{2}{6} = \frac{1}{3}$$

ゆえに
$$\sin \alpha = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$$



(3) $S =$	$\frac{1}{2} AM \cdot DM \sin \alpha =$	$\frac{1}{2} \times \sqrt{3} \times \sqrt{3} \times$	$\frac{2\sqrt{2}}{3} = \sqrt{2}$

	問6	問7	問8
正解	8	6	7
配点	7点	7点	6点

第3問 (1) $_4\mathrm{C}_2=\frac{4\cdot 3}{2\cdot 1}=\mathbf{6}$ (通り)

(2)
$$_{4}C_{3}\left(\frac{1}{2}\right)^{3}\left(1-\frac{1}{2}\right)^{4-3}=\frac{1}{4}$$

 賞金
 0
 100
 200
 300
 400
 計

 確率
 $\frac{1}{16}$ $\frac{4}{16}$ $\frac{6}{16}$ $\frac{4}{16}$ $\frac{1}{16}$ 1

賞金の期待値は

$$0 \times \frac{1}{16} + 100 \times \frac{4}{16} + 200 \times \frac{6}{16} + 300 \times \frac{4}{16} + 400 \times \frac{1}{16} = 200 \ (\Box)$$

	問9	問 10	問 11
正解	3	6	9
配点	7点	7点	6点

第4問

	問 12	問 13	問 14	問 15
正解	8	2	1	3
配点	6点	7点	7点	7点