平成14年度 熊本大学2次試験前期日程(数学問題)120分
理系(理,医,薬,工学部) 平成14年2月25日

1. さいごを繰り返し投げて, n 回目に当たる目の数を X_n とし, a_n = X_1 X_2 \cdots X_n
とする. このとき, 各 n について, a_n \leq 9 となる確率を求めよ。

2. a > 1, a > p > 0 とする。2 直線 l_1 : y = 2x - 1, l_2 : y = a の交点を S, l_1 と x
軸の交点を T とし, y 軸上の点 P(0, p), l_1 上の点 A(1, 1), l_2 上の点 Q(q, a)をる。\angle PQS = 135^\circ, \angle AQS = 45^\circ であるとき, 次の問いに答えよ。

   (1) p, q それぞれを a で表せ。
   (2) \angle PAT = \angle QAS であるとき, p, a それぞれの値を求めよ。

3. 楕円 E : \frac{x^2}{8} + y^2 = 1 について, 次の問いに答えよ。

   (1) E 上の点 (a, b) における E の接線の x 切片と y 切片の和を a で表したも
のを f(a) とするとき, f(a) を求めよ。ただし, a > 0, b > 0 とする。
   (2) f(a) が最小となる a の値を求めよ。

4. a > 0 とするとき, 関数 f(x) = x^2 e^{-\frac{x}{2}} について, 次の問いに答えよ。

   (1) x = c で f(x) が極大値をとるとき, c を a で表せ。
   (2) 定積分 \int_0^c f(x) \, dx を a で表せ。
解答例

1. \( a_n \leq 9 \) となる確率を \( p_n \) とする。

1 1. \( n = 1 \) のとき すべての \( X_1 \) に対して \( a_1 = X_1 \leq 9 \) であるから \( p_1 = 1 \)
2 2. \( n = 2 \) のとき
   1 の目が 2 回出るのは、1 通り
   1 の目が 1 回だけ出るのは、残りの目が 1 以外で 5 \( \times \) 2\( \binom{1}{1} \) (通り)
   1 の目が出ないのは、次の 6 通り
   \((X_1, X_2) = (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3)\)

したがって
\[ \frac{1}{6^2} = \frac{17}{36} \]

3 3. \( n \geq 3 \) のとき、1 以外の目が出る回数は 3 回以内であることに注意して
   1 の目が \( n \) 回出るのは、1 通り
   1 の目が \( n - 1 \) 回だけ出るのは、残りの目が 1 以外で 5 \( \times \) \( \binom{n-1}{1} \) (通り)
   1 の目が \( n - 2 \) 回だけ出るのは、残りの目が次の組合せで 6 \( \times \) \( \binom{n-2}{2} \) (通り)
   \((2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3)\)

1 の目が \( n - 3 \) 回だけ出るのは、残りの目が (2, 2, 2) で \( \binom{n}{3} \) (通り)

したがって
\[ \frac{1}{6^n} \left\{ 1 + 5n + 3n(n - 1) + \frac{n(n - 1)(n - 2)}{6} \right\} = \frac{1}{6^{n+1}} (n^3 + 15n^2 + 14n + 6) \]

① は、\( n = 1, n = 2 \) のときも成り立つので
\[ p_n = \frac{1}{6^{n+1}} (n^3 + 15n^2 + 14n + 6) \]
(1) $a > 1$, $a > p$, $\angle PQS = 135^\circ$, $\angle AQS = 45^\circ$
のであから，直線 $AQ$ の傾きは $-1$，直線 $PQ$ の傾きは $1$ である。
したがって，直線 $AQ$ の方程式は
\[ y - 1 = -1(x - 1) \]
すなわち
\[ y = -x + 2 \quad \cdots (1) \]
直線 (1) と直線 $l_2 : y = a \cdots (2)$ の交点が $Q$ であるから，(1)，(2) を解いて
\[ Q(2-a, a) \]
直線 $PQ$ は，$Q$ を通り傾き $1$ の直線であるから，その方程式は
\[ y - a = 1\{x - (2 - a)\} \quad \text{すなわち} \quad y = x + 2a - 2 \]
ゆえに，$P$ の座標は $(0, 2a - 2)$
よって $p = 2a - 2$, $q = 2 - a$

(2) $l_1$ に関して，$P$ と対称な点を $P'(s, t)$ とする。
$l_1$ の傾きは $2$，直線 $PP'$ の傾きは $\frac{t - 2a + 2}{s}$ である，$l_1 \perp PP'$ であるから
\[ 2 \times \frac{t - 2a + 2}{s} = -1 \quad \text{すなわち} \quad s + 2t = 4a - 4 \quad \cdots (3) \]
線分 $PP'$ の中点 $\left(\frac{s}{2}, \frac{2a - 2 + t}{2}\right)$ が $l_1$ 上にあるから
\[ \frac{2a - 2 + t}{2} = 2 \times \frac{s}{2} - 1 \quad \text{すなわち} \quad 2s - t = 2a \quad \cdots (4) \]
(3), (4) を解いて $s = \frac{8a - 4}{5}$, $t = \frac{6a - 8}{5}$ ゆえに $P' \left(\frac{8a - 4}{5}, \frac{6a - 8}{5}\right)$
\[ \angle PAT = \angle QAS \] であるとき，$P'$ は直線 (1) 上にあるので
\[ \frac{6a - 8}{5} = -\frac{8a - 4}{5} + 2 \quad \text{ゆえに} \quad a = \frac{11}{7} \]
これを (1) の結果に代入して $p = \frac{8}{7}$
(1) $E: \frac{x^2}{8} + y^2 = 1$ 上の点 $(a, b)$ における接線の方程式は $\frac{ax}{8} + by = 1$

この接線の $x$ 切片，$y$ 切片はそれぞれ，$\frac{8}{a}$，$\frac{1}{b}$ であるから

$$f(a) = \frac{8}{a} + \frac{1}{b} \cdots (1)$$

点 $(a, b)$ は $E$ 上の点であるから，$a > 0$，$b > 0$ に注意して

$$\frac{a^2}{8} + b^2 = 1 \cdots (2) \text{ ゆえに } b = \frac{\sqrt{8 - a^2}}{2\sqrt{2}} \quad (0 < a < 2\sqrt{2})$$

これを (1) に代入して

$$f(a) = \frac{8}{a} + \frac{2\sqrt{2}}{\sqrt{8 - a^2}}$$

(2) (1) は，$a$ の関数であるから，その第 1 次，第 2 次導関数を求めると

$$f'(a) = -\frac{8}{a^2} - \frac{b'}{b^2} \cdots (3)$$

$$f''(a) = \frac{16}{a^3} + \frac{2(b')^2}{b^3} - \frac{b'}{b^2} \cdots (4)$$

(2) を $a$ で微分すると

$$\frac{a}{4} + 2bb' = 0 \cdots (5) \text{ ゆえに } b' = -\frac{a}{8b} \cdots (5)'$$

(5)' を (3) に代入すると

$$f'(a) = -\frac{8}{a^2} + \frac{a}{8b^3} = \frac{(a - 4b)(a^2 + 4ab + 16b^2)}{8a^2b^3} \cdots (3)'$$

(5) を $a$ について微分すると

$$\frac{1}{4} + 2(b')^2 + 2bb'' = 0$$

(5)' をこれに代入し，$b''$ について解くと

$$b'' = -\frac{1}{4b} - \frac{a^2}{64b^3} \cdots (6)$$

(5)，(6) を (4) に代入して整理すると

$$f''(a) = \frac{16}{a^3} + \frac{1}{4b^3} + \frac{3a^2}{64a^5} \cdots (4)'$$

$a > 0$，$b > 0$ であるから，常に $f''(a) > 0$

ゆえに，$f'(a) = 0$ となるとき，$f(a)$ は極小かつ最小である．

(3)' より，$f'(a) = 0$ となるとき $a = 4b \cdots (7)$

(2)，(7) を $a > 0$ に注意して解いて

$$a = \frac{4\sqrt{3}}{3}$$
4 (1) $f(x) = x^2 e^{-\frac{x}{a}}$ を微分すると

$$f'(x) = 2xe^{-\frac{x}{a}} + x^2 \left(-\frac{1}{a} e^{-\frac{x}{a}}\right)$$

$$= -\frac{x}{a} (x - 2a)e^{-\frac{x}{a}}$$

$a > 0$ であるから、増減表は、右のようになる。

よって \(c = 2a\)

(2) (1) の結果から

$$\int_0^c f(x) \, dx = \int_0^{2a} x^2 e^{-\frac{x}{a}} \, dx$$

$$= -a \left( (x^2 + 2ax + 2a^2) e^{-\frac{x}{a}} \right)_0^{2a}$$

$$= 2a^3 \left( 1 - \frac{5}{e^2} \right)$$

解説 部分積分法により、次式が得られる。

$$\int e^{kx} f(x) \, dx = \frac{e^{kx}}{k} \left\{ f(x) - \frac{f'(x)}{k} + \frac{f''(x)}{k^2} - \frac{f'''(x)}{k^3} + \cdots \right\} + C$$

上式において $k = -\frac{1}{a}$, $f(x) = x^2$ すると

$$\int x^2 e^{-\frac{x}{a}} \, dx = -ae^{-x}(x^2 + 2ax + 2a^2) + C$$