平成19年度 熊本学園大学一般入学試験問題

数学I・数学II・数学A

経 済 学 部 (リーガルエコノミクス学科) 外 国 語 学 部 (東アジア学科) 社会福祉学部第一部 (社会福祉学科)

平成19年2月12日実施

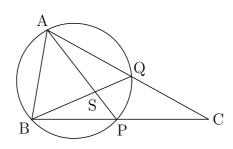
(70分)

注 意 事 項

- 1. 試験開始の合図があるまで,この問題用紙を開かないこと。
- 2. 受験者はすべて試験監督者の指示に従うこと。
- 3. 問題は全部で7題ある。
- 4. 受験番号を必ず記入すること。
- 5、試験時間内の退場はできない。
- 6. 計算過程は書かなくてよい。
- 7. 解答用紙のみを提出すること。

平成 19 年度 熊本学園大学一般入学試験 (A 日程) 数学 I・数学 II・数学 A

- 1. 以下の問に答えよ。
 - (1) $x^2 + 4x + 5$ を複素数の範囲で因数分解せよ。
 - $(2) \log_3 \frac{5}{18} \log_2 9 \log_3 \frac{15}{2} + 2\log_2 6$ を簡単にせよ。
- 2. 以下の方程式を解け。
 - (1) $|1+5\cos x| = 1-\cos x$ (ただし, $0^{\circ} \le x \le 180^{\circ}$)
 - (2) $|x^2 3x 4| = \frac{1}{2}x 2$
- 3. 右図のように , $\triangle ABC$ の 2 つの頂点 $A \ge B$ を通る円が辺 BC と交わる点を P , 辺 AC と交わる点を Q とし , また $A \ge P$, $B \ge Q$ を結ぶ 2 本の線分の交点を S とする。 BS = 4 , QS = 3 , AS = 6 , $\angle QAS = 20^\circ$, $\angle ASB = 70^\circ$ であるとき , $\angle PCQ$ の大き さと線分 PS の長さを求めよ。



- 4. A(3, 1), B(9, 4) を結ぶ線分について,以下の問いに答えよ。
 - (1) 線分 AB を 2:1 に内分する点 P と , 2:1 に外分する点 Q の座標を求めよ。
 - (2) 点 P を通り線分 AB と垂直に交わる直線 ℓ₁ の方程式を求めよ。
 - (3) 直線 ℓ_2 は傾きが $-\frac{1}{3}$ であり , 点 Q を通っている。このとき , ℓ_1 と ℓ_2 の交点を中心として点 A を通る円の方程式を求めよ。
- 5. 2 次方程式 $x^2-2(k-1)x-k^2+5k-4=0$ が異なる 2 つの正の実数解を持つとき,k の値の範囲を求めよ。
- 6. 自然数 m , n , L_1 , L_2 について $L_1=m+n+2$, $L_2=mn+m+n+1$ という関係が成立するとき , L_1 が奇数であるならば , L_2 は偶数である」という命題の逆と対偶は , いずれも「①」が②」であるならば , ③」は④」である」という形式で述べることができる。逆と対偶のそれぞれについて , ①~④ に入れるのに最も適当なものを以下の (a) ~ (h) から選んで記号で答えよ。また , 逆と対偶のそれぞれについて , それが真であるか偽であるかを答えよ。
 - (a) m
- (b) n
- (c) L_1
- (d) L_2

- (e) **自然数**
- (f) **整数**
- (g) 奇 数
- (h) 偶数

- 7. 放物線 $y = -x^2 + 2x + 8$ と直線 y = a (a > 0) が異なる 2 点で交わっている。この 2 点のうち,x 座標がより小さい方を P,より大きい方を Q とするとき,以下の問いに答えよ。
 - (1) a の取り得る値の範囲を求めよ。また,P,Q の座標を a を用いて表せ。
 - (2) 放物線とx軸の2つの共有点の中点をMとし,PとQとMを結んで三角形を作るとき,その三角形の面積 S_t をaの関数として表したうえで, S_t の最大値を与えるaの値を求めよ。
 - (3) a が S_t の最大値を与える値をとるとき,放物線と y=a で囲まれる領域の面積 S_u の値を求めよ。

解答例

1. (1) 2 次方程式 $x^2 + 4x + 5 = 0$ の解が $x = -2 \pm i$ であるから

$$x^{2} + 4x + 5 = \{x - (-2+i)\}\{x - (-2-i)\}\$$
$$= (x + 2 - i)(x + 2 + i)$$

(2)
$$\log_3 \frac{5}{18} - \log_2 9 - \log_3 \frac{15}{2} + 2\log_2 6$$
$$= \log_2(6^2 \div 9) + \log_3 \left(\frac{5}{18} \div \frac{15}{2}\right)$$
$$= \log_2 4 + \log_3 \frac{1}{27}$$
$$= \log_2 2^2 + \log_3 3^{-3} = 2 + (-3) = -1$$

2. (1) 左辺 ≥ 0 であるから , $1-\cos x \geq 0$ に注意して $1+5\cos x = \pm(1-\cos x)$

ゆえに
$$1+5\cos x=1-\cos x$$
 から $\cos x=0$ $1+5\cos x=-(1-\cos x)$ から $\cos x=-\frac{1}{2}$

 $0^{\circ} \le x \le 180^{\circ}$ であるから $x = 90^{\circ}, 120^{\circ}$

$$(2)$$
 左辺 ≥ 0 であるから, $\frac{1}{2}x-2\geq 0$ より $x\geq 4$ …①

ゆえに
$$x^2 - 3x - 4 = \frac{1}{2}x - 2$$
 から $(x - 4)(2x + 1) = 0$ $x^2 - 3x - 4 = -\left(\frac{1}{2}x - 2\right)$ から $(x - 4)(2x + 3) = 0$

① より x=4

3.
$$\angle QAS = 20^\circ$$
, $\angle ASB = 70^\circ$ & 1) $\angle AQS = \angle ASB - \angle QAS = 70^\circ - 20^\circ = 50^\circ$ $\angle SQC = 180^\circ - \angle AQS = 180^\circ - 50^\circ = 130^\circ$

 $\triangle SAQ \leadsto \triangle SBP$ であるから , $\angle SQA = \angle SPB$ より $\angle SQC = \angle SPC = 130^\circ$ $\angle QSP = \angle ASB$ (対頂角) であるから $\angle QSP = 70^\circ$

四角形 QSPC の内角の和は 360° であるから

$$\angle PCQ = 360^{\circ} - \angle CQS - \angle QSP - \angle SPC$$

= $360^{\circ} - 130^{\circ} - 70^{\circ} - 130^{\circ}$
= $\mathbf{30}^{\circ}$

方べきの定理により PS-SA = BS-SQ であるから

$$PS \times 6 = 4 \times 3$$
 ゆえに $PS = 2$

設問の誤り -

本問題も,平成 19 年 2 月 10 日に実施された一般入学試験問題 (A 日程) の 6 と同様に,角の大きさと辺の長さの整合性を欠いた問題である.たとえば, $\triangle QAS$ に正弦定理を適用すると $QS:AS=\sin\angle QAS:\sin\angle SQA$ である. $\angle QAS=20^\circ$, $\angle SQA=50^\circ$ であれば, $\sin 20^\circ=0.3420$, $\sin 50^\circ=0.7660$ で あるから,辺の長さの比 QS:AS=3:6 と不整合である.

4. (1) 線分 AB を 2:1 に内分する点 P の座標は

$$\left(\frac{1\cdot 3 + 2\cdot 9}{2+1}, \frac{1\cdot 1 + 2\cdot 4}{2+1}\right)$$
 より (7, 3)

線分 AB を 2:1 に外分する点 Q の座標は

$$\left(\frac{-1\cdot 3 + 2\cdot 9}{2-1}, \frac{-1\cdot 1 + 2\cdot 4}{2-1}\right)$$
 \$\(\mathre{\pm}\) (15, 7)

(2) 線分 AB の傾きは

$$\frac{4-1}{9-3} = \frac{1}{2}$$

線分 AB に垂直な直線の傾き m は

$$\frac{1}{2}m=-1$$
 ゆえに $m=-2$

直線 ℓ₁ の方程式は

$$y-3=-2(x-7)$$
 すなわち $y=-2x+17$

(3) 直線 ℓ_2 の方程式は

$$y-7=-rac{1}{3}(x-15)$$
 すなわち $y=-rac{1}{3}x+12$

 ℓ_1 , ℓ_2 の交点をCとすると,Cの座標は,連立方程式

A(3, 1), C(3, 11) 間の距離 AC は AC = 10よって, 求める円の方程式は $(x-3)^2+(y-11)^2=100$

5. この2次方程式の2つの解を α , β とし,判別式をDとする.方程式が異なる正 の実数解をもつのは,次が成り立つときである.

$$D>0$$
 かつ $\alpha+\beta>0$ かつ $\alpha\beta>0$

ここで

$$D/4 = \{-(k-1)\}^2 - 1 \cdot (-k^2 + 5k - 4)$$
$$= 2k^2 - 7k + 5$$
$$= (k-1)(2k-5)$$

解と係数の関係から

$$\alpha + \beta = 2(k-1)$$
 , $\alpha\beta = -k^2 + 5k - 4 = -(k-1)(k-4)$

したがって,D>0, $\alpha+\beta>0$, $\alpha\beta>0$ を満たせばよいので

$$\begin{cases} (k-1)(2k-5) > 0 \\ 2(k-1) > 0 \\ -(k-1)(k-4) > 0 \end{cases}$$

第
$$1$$
 式から $k < 1, \frac{5}{2} < k$ · · · ① 第 2 式から $k > 1$ · · · ②

第
$$\,2\,$$
式から $k>1$ $\,\cdots\,$ ②

第
$$3$$
 式から $1 < k < 4 \cdots (3)$

① , ② , ③ の共通範囲を求めて $\displaystyle \frac{5}{2} < k < 4$

$$L_1 = (m+1) + (n+1)$$
 , $L_2 = (m+1)(n+1)$

 L_2 が奇数であれば,m+1 および n+1 は奇数であるから, L_1 は偶数

7. (1) $y = -x^2 + 2x + 8 = -(x - 1)^2 + 9$ であるから,y = a (a > 0) とこの放物線が2 点で交わるときaの値の範囲は 0 < a < 9 P,Qのx座標は,方程式

$$\begin{array}{c|c}
 & 9 \\
\hline
 & P \\
 & a \\
\hline
 & O \\
 & M \\
\hline
 & x
\end{array}$$

$$-x^2 + 2x + 8 = a$$

を解いて
$$x=1\pm\sqrt{9-a}$$

よって $\mathbf{P}(1-\sqrt{9-a},\ a)$, $\mathbf{Q}(1+\sqrt{9-a},\ a)$

(2) 右の図から

$$S_t = \frac{1}{2} \times PQ \times a = \frac{1}{2} \times 2\sqrt{9-a} \times a = a\sqrt{9-a}$$

微分すると
$$f'(a) = -3a^2 + 18a$$

= $-3a(a-6)$

a	0		6		9
f'(a)		+	0	_	
f(a)		7	極大	\	

f'(a) = 0 とすると a = 0, 6

増減表は,右のようになる.

f(a) が最大のとき, S_t は最大となる. ゆえに S_t の最大値を与える a の値は

(3) a=6 であるから , (1) の結果より P , Q の x 座標はそれぞれ

$$x = 1 - \sqrt{3}$$
 , $x = 1 + \sqrt{3}$

となる.したがって

$$S_u = \int_{1-\sqrt{3}}^{1+\sqrt{3}} \left\{ (-x^2 + 2x + 8) - 6 \right\} dx$$

$$= -\int_{1-\sqrt{3}}^{1+\sqrt{3}} (x^2 - 2x - 2) dx$$

$$= -\int_{1-\sqrt{3}}^{1+\sqrt{3}} \left\{ x - (1 - \sqrt{3}) \right\} \left\{ x - (1 + \sqrt{3}) \right\} dx$$

$$= -\left(-\frac{1}{6} \right) \left\{ (1 + \sqrt{3}) - (1 - \sqrt{3}) \right\}^3 = \frac{1}{6} (2\sqrt{3})^3 = 4\sqrt{3}$$