令和7年度 九州大学2次試験前期日程(数学問題)150分理系(経済(経工),理,医,歯,薬,工,芸工,農学部)

問題 1 2 3 4 5

- **1** 座標空間内の 3 点 A(1, 1, -5), B(-1, -1, 7), C(1, -1, 3) を通る平面を α とする。点 P(a, b, t) を通り α に垂直な直線と xy 平面との交点を Q とする。
 - (1) 点 Q の座標を求めよ。
 - (2) t がすべての実数値をとって変化するときの OQ の最小値が 1 以下となるような a, b の条件を求めよ。ただし、O は原点である。
- **2** 以下の問いに答えよ。
 - (1) $y = \tan x$ とするとき、 $\frac{dy}{dx}$ を y の整式で表せ。
 - (2) 次の定積分を求めよ。

$$\int_0^{\frac{\pi}{4}} \frac{\tan^4 x - \tan^2 x - 2}{\tan^2 x - 4} \, dx$$

- 3 以下の問いに答えよ。
 - (1) n を自然数とするとき、 n^2 を 8 で割った余りは 0、1、4 のいずれかであることを示せ。
 - (2) $2^m = n^2 + 3$ をみたす 0 以上の整数の組 (m, n) をすべて求めよ。
- 4 半径1の円周上に反時計回りに A, B, C, Dを順にとり、線分 AD は直径で、AC = CD, AB = BC が成り立つとする。
 - (1) ∠ACB を求めよ。
 - (2) BC を求めよ。
 - (3) 線分ACと線分BDの交点をEとするとき、三角形BCEの面積を求めよ。
- $| \mathbf{5} | 1$ 個のさいころを3回投げ、出る目を順にa, b, cとする。整式

$$f(x) = (x^2 - ax + b)(x - c)$$

について,以下の問いに答えよ。

- f(x) = 0 をみたす実数 x の個数が 1 個である確率を求めよ。
- f(x) = 0 をみたす自然数 x の個数が 3 個である確率を求めよ。

解答例

1 (1) $\overrightarrow{AB} = (-2, -2, 12) = 2(-1, -1, 6)$, $\overrightarrow{AC} = (0, -2, 8) = 2(0, -1, 4)$ より、 α の法線ベクトルを

$$\vec{n} = \frac{1}{4} \overrightarrow{AB} \times \overrightarrow{AC} = (2, 4, 1)$$

とすると、点 $\mathbf{P}(a,\ b,\ t)$ を通り、方向ベクトルが $\stackrel{
ightarrow}{n}$ である直線の方程式は

$$\frac{x-a}{2} = \frac{y-b}{4} = z - t$$

であり、この直線とxy平面の交点は、上式にz=0を代入して

$$x = -2t + a$$
, $y = -4t + b$

よって
$$Q(-2t+a, -4t+b, 0)$$

(2) (1) の結果から

$$|\overrightarrow{OQ}|^2 = (-2t+a)^2 + (-4t+b)^2$$

$$= 20t^2 - 4(a+2b)t + a^2 + b^2$$

$$= 20\left\{t^2 - \frac{1}{5}(a+2b)t\right\} + a^2 + b^2$$

$$= 20\left\{t - \frac{1}{10}(a+2b)\right\}^2 + \frac{1}{5}(2a-b)^2$$

したがって、OQ の最小値は $\frac{|2a-b|}{\sqrt{5}}$

OQの最小値が1以下となるa, bの条件は

$$\frac{|2a-b|}{\sqrt{5}} \le 1$$
 すなわち $|2a-b| \le \sqrt{5}$

(1) $y = \tan x$ を微分すると

$$\frac{dy}{dx} = \frac{1}{\cos^2 x} = 1 + \tan^2 x = 1 + y^2$$

(2) (1) の結果を利用すると
$$x \mid 0 \longrightarrow \frac{\pi}{4}$$
 $y \mid 0 \longrightarrow 1$

$$\int_0^{\frac{\pi}{4}} \frac{\tan^4 x - \tan^2 x - 2}{\tan^2 x - 4} \, dx = \int_0^1 \frac{y^4 - y^2 - 2}{y^2 - 4} \cdot \frac{dy}{1 + y^2}$$

$$= \int_0^1 \frac{y^2 - 2}{y^2 - 4} dy = \int_0^1 \left(1 + \frac{2}{y^2 - 4} \right) dy$$

$$= \left[y + \frac{1}{2} \log \left| \frac{y - 2}{y + 2} \right| \right]_0^1 = \mathbf{1} - \frac{1}{2} \log \mathbf{3}$$

3 (1) 法8について

$$n \equiv 0$$
 のとき $n^2 \equiv 0 \pmod{8}$
 $n \equiv \pm 1$ のとき $n^2 \equiv 1 \pmod{8}$
 $n \equiv \pm 2$ のとき $n^2 \equiv 4 \pmod{8}$
 $n \equiv \pm 3$ のとき $n^2 \equiv 1 \pmod{8}$
 $n \equiv 4$ のとき $n^2 \equiv 0 \pmod{8}$

よって, n^2 を 8 で割った余りは (n は自然数) 0, 1, 4 のいずれかである.

- (2) (*) $2^m = n^2 + 3$ について (m, n は 0 以上の整数) $2^1 < n^2 + 3$ であるから, $m \ge 2$
 - (i) m = 2 のとき, (*) は $2^2 = n^2 + 3$

$$n^2 = 1$$
 n は 0 以上の整数であるから $n = 1$

(ii) $m \ge 3$ のとき $2^m \equiv 0 \pmod{8}$ であるから

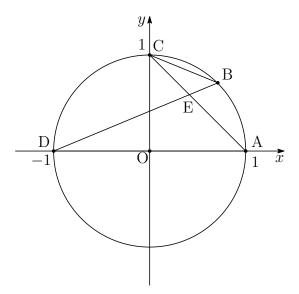
$$n^2 + 3 \equiv 0$$
 ゆえに $n^2 \equiv 5 \pmod{8}$

(1) の結論から、上の第2式を満たすn は存在しない。

(i), (ii) から
$$(m, n) = (2, 1)$$

4 (1) AD は半径1の円の直径であるから、O を原点とする座標平面上に A(1, 0), D(-1, 0) をとると、OB、OC の偏角はそれぞれ $\frac{\pi}{4}$, $\frac{\pi}{2}$ である. 円周角と中心角の定理により

$$\angle ACB = \angle ADB = \frac{1}{2}\angle AOB = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8}$$



(2)
$$B\left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right)$$
, $C\left(\cos\frac{\pi}{2}, \sin\frac{\pi}{2}\right)$ & $B\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $C(0, 1)$

$$BC = \sqrt{\left(0 - \frac{1}{\sqrt{2}}\right)^2 + \left(1 - \frac{1}{\sqrt{2}}\right)^2} = \sqrt{2 - \sqrt{2}}$$

(3) 直線 AC の方程式は x+y=1 直線 BD の方程式は

$$y = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 1}(x+1)$$
 すなわち $y = (\sqrt{2} - 1)(x+1)$

直線 AC と BD の方程式からxを消去すると、点 E の y 座標は

$$y=(\sqrt{2}-1)(2-y)$$
 これを解いて $y=2-\sqrt{2}$ したがって $\triangle {\rm ADE}=\frac{1}{2}\cdot 2\cdot (2-\sqrt{2})=2-\sqrt{2}$

 \triangle BCE ∞ \triangle ADE \overline{c} \overline{c} \overline{c} \overline{c} \overline{c}

$$\triangle BCE = \left(\frac{BC}{AD}\right)^2 \triangle ADE = \left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^2 (2-\sqrt{2}) = \frac{\mathbf{3} - \mathbf{2}\sqrt{\mathbf{2}}}{\mathbf{2}}$$

5 (1) (i)
$$x^2 - ax + b = 0$$
 が実数解をもたないとき $(c = 1, 2, 3, 4, 5, 6)$

$$a^2 - 4b < 0$$
 ゆえに $\frac{a^2}{4} < b \le 6$

このとき,
$$a \le 4$$
に注意して

$$a=1$$
 のとき $b=1,\ 2,\ 3,\ 4,\ 5,\ 6$

$$a=2$$
 のとき $b=2, 3, 4, 5, 6$

$$a = 4$$
 のとき $b = 5, 6$

(ii)
$$x = c$$
 が $f(x) = 0$ の 3 重解であるとき

$$f(x) = (x - c)^3 = (x^2 - 2cx + c^2)(x - c)$$

$$a=2c, b=c^2$$
 であるから、このとき

$$(a, b, c) = (2, 1, 1), (4, 4, 2)$$

(i), (ii) より, 求める確率は

$$\frac{(6+5+4+2)\times 6+2}{6^3} = \frac{13}{27}$$

(2) $a^2 - 4b$ が平方数であることは, $x^2 - ax + b = 0$ が自然数を解にもつため の必要条件である. $a \ge 2$ に注意して

$$a=2$$
のとき $b=1$

$$a = 3$$
 のとき $b = 2$

$$a = 4$$
 のとき $b = 3.4$

$$a = 5$$
 のとき $b = 4.6$

$$a = 6$$
 のとき $b = 5$

これらを係数とする 2 次方程式 $x^2 - ax + b = 0$ で異なる 2 つの実数解をもつのは、次の 5 通りである.

$$x^{2} - 3x + 2 = 0$$
, $x^{2} - 4x + 3 = 0$, $x^{2} - 5x + 4 = 0$, $x^{2} - 5x + 6 = 0$. $x^{2} - 6x + 5 = 0$

それぞれの場合について、cのとり方は4通りあるから

$$\frac{5\times4}{6^3} = \frac{\mathbf{5}}{\mathbf{54}}$$