令和6年度 九州大学2次試験前期日程(数学問題)120分 文系(文学部,教育学部,法学部,経済学部(経済・経営))

問題 1 2 3 4

1 2つの放物線

$$C_1: y = 2x^2, \quad C_2: y = 2x^2 - 8x + 16$$

の両方に接する直線をℓとする。以下の問いに答えよ。

- (1) 直線ℓの方程式を求めよ。
- (2) 2つの放物線 C_1 , C_2 と直線 ℓ で囲まれた図形の面積を求めよ。
- | **2** 座標平面上の原点 O(0, 0), 点 A(2, 1) を考える。点 B は第 1 象限にあり, $|\overrightarrow{OB}| = \sqrt{10}$, $\overrightarrow{OA} \perp \overrightarrow{AB}$ をみたすとする。以下の問いに答えよ。
 - (1) 点 B の座標を求めよ。
 - (2) s, t を正の実数とし, $\overrightarrow{OC} = s\overrightarrow{OA} + t\overrightarrow{OB}$ をみたす点 C を考える。三角形 OAC と三角形 OBC の面積が等しく, $|\overrightarrow{OC}| = 4$ が成り立つとき,s, t の値を求めよ。
- **3** 以下の問いに答えよ。
 - (1) 自然数 a, b が a < b をみたすとき, $\frac{b!}{a!} \ge b$ が成り立つことを示せ。
 - (2) $2 \cdot a! = b!$ をみたす自然数の組 (a, b) をすべて求めよ。
 - (3) $a! + b! = 2 \cdot c!$ をみたす自然数の組 (a, b, c) をすべて求めよ。
- 4 n を 3 以上の整数とする。座標平面上の点のうち、x 座標と y 座標がともに 1 以上 n 以下の整数であるものを考える。これら n^2 個の点のうち 3 点以上を通る直線の個数を L(n) とする。以下の問いに答えよ。
 - (1) *L*(3) を求めよ。
 - (2) L(4) を求めよ。
 - (3) L(5) を求めよ。

解答例

1 (1) $y = 2x^2$ を微分すると y' = 4x C_1 上の点 $(t, 2t^2)$ における接線の方程式は

$$y-2t^2 = 4t(x-t)$$
 すなわち $y = 4tx - 2t^2$ …①

 C_2 と直線 ① の方程式から y を消去すると

$$2x^2 - 8x + 16 = 4tx - 2t^2$$

整理すると $x^2 - 2(t+2) + t^2 + 8 = 0$ · · · ②

 C_2 と直線 ① が接するから、② の係数について

$$D/4 = (t+2)^2 - (t^2+8) = 4t - 4 = 0$$
 ゆえに $t=1$

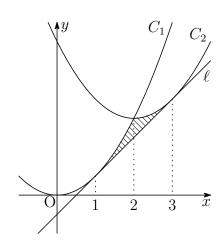
求める直線 ℓ の方程式は、t=1を① に代入して y=4x-2

(2) t=1 より、 C_1 と ℓ の接点の x 座標は x=1 また、(2) の係数から、 (C_2) と ℓ の接点の (x) 座標は

$$x = -\frac{-2(t+2)}{2 \cdot 1} = t+2 = 1+2 = 3$$

よって、求める面積をSとすると

$$S = \int_{1}^{2} \{2x^{2} - (4x - 2)\} dx + \int_{2}^{3} \{(2x^{2} - 8x + 16) - (4x - 2)\} dx$$
$$= \int_{1}^{2} 2(x - 1)^{2} dx + \int_{2}^{3} 2(x - 3)^{2} dx$$
$$= \frac{2}{3} \left[(x - 1)^{3} \right]_{1}^{2} + \frac{2}{3} \left[(x - 3)^{3} \right]_{2}^{3} = \frac{4}{3}$$



$$\overrightarrow{2}$$
 (1) $\overrightarrow{OA} \perp \overrightarrow{AB} = 0$ より, $\overrightarrow{OA} \cdot \overrightarrow{AB} = 0$ であるから

$$\overrightarrow{OA} \cdot (\overrightarrow{OB} - \overrightarrow{OA}) = 0 \quad \text{with} \quad \overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}|^2 = 5$$

$$\overrightarrow{OA}$$
 と \overrightarrow{OB} のなす角を θ とすると, $\overrightarrow{OA} = (2, 1)$ より $|\overrightarrow{OA}| = \sqrt{5}$

$$\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}||\overrightarrow{OB}|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \quad \text{with } \theta = \frac{\pi}{4}$$

 \overrightarrow{OA} の偏角を α とすると

$$(2, 1) = |\overrightarrow{OA}|(\cos \alpha, \sin \alpha) = (\sqrt{5}\cos \alpha, \sqrt{5}\sin \alpha)$$

点 B が第 1 象限の点であることから、 $\mathrm{B}(b_1,\ b_2)$ とすると

$$b_1 = |\overrightarrow{OB}| \cos\left(\alpha + \frac{\pi}{4}\right) = \sqrt{10} \left(\cos\alpha\cos\frac{\pi}{4} - \sin\alpha\sin\frac{\pi}{4}\right)$$
$$= \sqrt{5}\cos\alpha - \sqrt{5}\sin\alpha = 2 - 1 = 1,$$
$$b_2 = |\overrightarrow{OB}| \sin\left(\alpha + \frac{\pi}{4}\right) = \sqrt{10} \left(\sin\alpha\cos\frac{\pi}{4} + \cos\alpha\sin\frac{\pi}{4}\right)$$
$$= \sqrt{5}\sin\alpha + \sqrt{5}\cos\alpha = 1 + 2 = 3$$

$$\triangle \text{OAC} = \frac{1}{2}|2 \cdot (s+3t) - 1 \cdot (2s+t)| = \frac{5}{2}|t| = \frac{5}{2}t$$
$$\triangle \text{OBC} = \frac{1}{2}|1 \cdot (s+3t) - 3 \cdot (2s+t)| = \frac{5}{2}|s| = \frac{5}{2}s$$

$$\triangle OAC = \triangle OBC$$
 より、 $s = t$ であるから $\overrightarrow{OC} = (3s, 4s)$

$$|\overrightarrow{OC}| = 4 \text{ \sharp } 9 \quad \sqrt{(3s)^2 + (4s)^2} = 5s = 4 \quad \text{\sharp } 5 \text{ \sharp } 5$$

3 (1)
$$b > a$$
 のとき, $b-1 \ge a$ であるから $(b-1)! \ge a!$

$$b! = b \cdot (b-1)! \ge b \cdot a!$$
 よって $\frac{b!}{a!} \ge b$

(2)
$$2 \cdot a! = b!$$
 より $\frac{b!}{a!} = 2 > 1$ であるから

$$a! < b!$$
 すなわち $a < b$

a < b より、(1) の結論を用いると

$$2 = \frac{b!}{a!} \ge b > a$$
 \$\frac{b}{3} < (a, b) = (1, 2)

(3) (i) $a \leq c$, $b \leq c$ のとき

$$\frac{a!}{c!} + \frac{b!}{c!} = 2, \quad \frac{a!}{c!} \le 1, \quad \frac{b!}{c!} \le 1$$

このとき
$$\frac{a!}{c!}=1$$
, $\frac{b!}{c!}=1$ すなわち $a=c,\ b=c$ $\cdots(*)$

(ii) a > c または b > c のとき,一般性を失うことなく,b > c とし, (1) の結論を用いると

$$2 = \frac{a!}{c!} + \frac{b!}{c!} \ge \frac{a!}{c!} + b > b > c \ge 1$$

これをみたすb, c は存在しない.

(i), (ii) より
$$(a, b, c) = (n, n, n) (n は自然数)$$

 $|\mathbf{4}|$ (1) 条件を満たす直線は、次の8本より L(3)=8

$$y = x$$
, $y = -x + 4$, $x = k$, $y = k$ $(k = 1, 2, 3)$

(2) 条件を満たす直線は、次の14本より L(4) = 14

$$y = x - 1$$
, $y = x$, $y = x + 1$,
 $y = -x + 4$, $y = -x + 5$, $y = -x + 6$,
 $x = k$, $y = k$ $(k = 1, 2, 3, 4)$

- (3) 条件を満たす直線で傾きが0以上の直線は、(i)~(iv) の16 本ある.
 - (i) 条件を満たすx軸に平行な直線は y = k (k = 1, 2, 3, 4, 5)
 - (ii) 条件を満たす傾き $\frac{1}{2}$ の直線は $y-k=\frac{x-1}{2}$ (k=1,2,3)
 - (iii) 条件を満たす傾き 1 の直線は $y = x + k \ (k = 0, \pm 1, \pm 2)$
 - (iv) 条件を満たす傾き 2の直線は y-1=2(x-k) (k=1,2,3)
 - (i)~(iv)の直線を点(3,3)を中心に90°回転させた直線も条件を満たす.

よって
$$L(5) = 16 \times 2 = 32$$