平成 30 年度 佐賀大学 2 次試験後期日程 (数学問題)
理工・農学部 平成 30 年 3 月 12 日

• 理工学部は，[1] ～ [4] 数 I・II・III・A・B (120 分)

1 点 \((0, a)\) を中心とする半径 2 の円 \(C\) の周上に 3 点 \(P(s, t)\) , \(Q(-s, t)\) , \(R(x, y)\) をとる．このとき，次の間に答えよ．

(1) \(\overline{RP}\) と \(\overline{RQ}\) の内積を \(a\), \(t\), \(y\) を用いて表せ．

(2) \(a = 0\), \(s \geq 0\), \(t \geq 0\), \(x \geq 0\), \(y \geq 0\) のとき，(1) の内積の最小値とそのときの \(s\), \(t\), \(x\), \(y\) の値を求めよ．

(3) \(y = a\) のとき，(1) の内積の最大値とそのときの \(s\) の値を求めよ．

2 \(k\) は定数とする．関数

\[f(x) = x^3 - 3kx^2 - 2k^2x \]

が \(x = \alpha\) で極大値，\(x = \beta\) で極小値をとる．ただし，\(-1 < \alpha < 1 < \beta\) とする．このとき，次の間に答えよ．

(1) \(k\) のとり得る値の範囲を求めよ．

(2) \(\beta - \alpha\) を \(k\) を用いて表せ．

(3) \(f(\alpha) - f(\beta)\) を \(k\) を用いて表せ．

3 \(a\), \(b\), \(c\) は定数とし，

\[f(x) = (ax^2 + bx + c)e^{-x} \]

とする．このとき，次の間に答えよ．

(1) \(f(x)\) が相異なる極値をもつための条件を求めよ．

(2) \(f(x)\) がただ 1 つの極値として極大値をもつための条件を求めよ．さらに，

\[f(x) \] が極大値をとる \(x\) の値 \(x_0\) を求めよ．

(3) (2) の条件が満たされているとき，2 直線 \(y = 0\), \(x = x_0\) および曲線 \(y = f(x)\)

で囲まれる図形の面積 \(S\) を求めよ．
4 0 ≤ x ≤ \(\frac{\pi}{4} \) で定義された 2 曲線 \(C_1 : y = \sin x \), \(C_2 : y = \cos x \) および \(0 \leq x < \frac{\pi}{4} \) で定義された曲線 \(C_3 : y = \tan 2x \) について，次の問いに答えてよ．

(1) \(C_2 \) と \(C_3 \) の交点の \(x \) 座標を \(a \) とおくとき，\(\sin a \) の値を求めよ．

(2) \(0 < x < \frac{\pi}{4} \) において，不等式 \(\sin x < \tan 2x \) が成り立つことを示せ．

(3) 3 曲線 \(C_1 \), \(C_2 \), \(C_3 \) で囲まれた図形の面積 \(S \) を求めよ．

5 次の問いに答えよ．

(1) \(0 \leq \theta \leq \frac{\pi}{2} \) で \(\cos \theta = \frac{3}{5} \) のとき，\(\cos \left(2\theta + \frac{\pi}{3} \right) \) の値を求めよ．

(2) 数列 \(\{a_n\} \) が関係式

\[
a_1 = 1, \quad \log_3 \frac{a_{n+1}}{a_n} = 2^n \quad (n = 1, 2, 3, \ldots)
\]

を満たすとき，一般項 \(a_n \) を求めよ．

6 \(n \), \(m \) を自然数とし，\(p \), \(q \) を相異なる素数とする．ただし，\(p \geq 5 \) とする．このとき，次の問いに答えよ．

(1) \(n \) が積 \(pq \) で割り切れるとき，\(n \) 以下の自然数で \(p \) の倍数または \(q \) の倍数となるものの個数 \(N_1 \) を \(p, q, n \) を用いて表せ．

(2) \(n = 2p^m \) であるとき，\(n \) 以下の自然数で \(n \) と互いに素であるものの個数 \(N_2 \) を \(p, m \) を用いて表せ．

(3) \(n = 6p^m \) であるとき，\(n \) 以下の自然数で \(n \) と互いに素であるものの個数 \(N_3 \) を \(p, m \) を用いて表せ．
正解

【1】(1) $P(s, t), Q(-s, t), R(x, y)$ より
$$\overrightarrow{RP} = (s - x, t - y), \overrightarrow{RQ} = (-s - x, t - y)$$
したがって $\overrightarrow{RP} \cdot \overrightarrow{RQ} = (s - x)(-s - x) + (t - y)^2$
$$= x^2 - s^2 + t^2 - 2ty + y^2 \cdots (1)$$
$R(x, y), P(s, t)$ は C 上の点であるから
$$x^2 + (y - a)^2 = 4, \quad s^2 + (t - a)^2 = 4$$
上の第 1 式から第 2 式の辺々を引くと
$$x^2 - s^2 + (y - a)^2 - (t - a)^2 = 0$$
$$x^2 - s^2 = -y^2 + 2ay + t^2 - 2at \cdots (2)$$

①, ② から x, s を消去すると
$$\overrightarrow{RP} \cdot \overrightarrow{RQ} = 2t^2 - 2at + 2ay - 2ty$$

(2) $a = 0$ を (1) の結果に代入すると
$$\overrightarrow{RP} \cdot \overrightarrow{RQ} = 2t^2 = 2 \left(t - \frac{y}{2} \right)^2 \cdots (\ast)$$
このとき，C は原点を中心とする半径 2 の円で，$P(s, t), R(x, y)$ はこの円周上の $s \geq 0, t \geq 0, x \geq 0, y \geq 0$ を満たす点であるから，(\ast) を最小とするのは
$$t - \frac{y}{2} = 0, \quad y = 2 \quad \text{すなわち} \quad x = 0, \quad y = 2, \quad s = \sqrt{3}, \quad t = 1$$
このとき，(\ast) は，最小値 -2 をとる．

(3) $y = a$ を (1) の結果に代入すると
$$\overrightarrow{RP} \cdot \overrightarrow{RQ} = 2t^2 - 4at + 2a^2 = 2(t - a)^2 \cdots (\ast\ast)$$
このとき，C は点 $(0, a)$ を中心とする半径 2 の円で，$P(s, t)$ はこの円周上の点であるから
$$a - 2 \leq t \leq a + 2$$
よって，$t = a \pm 2$，すなわち，$s = 0$ のとき，(\ast\ast) は最大値 8 をとる．
2 (1) \(f(x) = x^3 - 3kx^2 - 2k^2x \) より \(f'(x) = 3x^2 - 6kx - 2k^2 \) \cdots (*)

\(f'(x) = 0 \) の解 \(\alpha, \beta \) が \(-1 < \alpha < 1 < \beta \) を満たすから，\(f'(-1) > 0, f'(1) < 0 \) より

\[
\begin{cases}
3 + 6k - 2k^2 > 0 \\
3 - 6k - 2k^2 < 0
\end{cases}
\]

第1式を解いて

\[
\frac{3 - \sqrt{15}}{2} < k < \frac{3 + \sqrt{15}}{2}
\]

第2式を解いて

\[
k < \frac{-3 - \sqrt{15}}{2}, \quad \frac{-3 + \sqrt{15}}{2} < k
\]

これらの共通範囲を求めて

\[
\frac{-3 + \sqrt{15}}{2} < k < \frac{3 + \sqrt{15}}{2}
\]

(2) \(f'(x) = 0 \)，すなわち \(3x^2 - 6kx - 2k^2 = 0 \) の解が \(\alpha, \beta \) であるから，解と係数の関係により

\[
\alpha + \beta = 2k, \quad \alpha \beta = -\frac{2}{3}k^2
\]

したがって

\[
(\beta - \alpha)^2 = (\alpha + \beta)^2 - 4\alpha \beta
\]

\[
= (2k)^2 - 4 \cdot \left(-\frac{2}{3}k^2\right) = \frac{20}{3}k^2
\]

\(\beta - \alpha > 0 \)，また，(1) の結果から \(k > 0 \) であるから

\[
\beta - \alpha = \frac{2\sqrt{15}}{3}k
\]

(3) (*) および \(f'(\alpha) = f'(\beta) = 0 \) より，\(f'(x) = 3(x - \alpha)(x - \beta) \) であるから

\[
f(\alpha) - f(\beta) = \int_{\alpha}^{\beta} f'(x) \, dx = 3 \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx
\]

\[
= -3 \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx
\]

\[
= -3 \left(-\frac{1}{6}\right) (\beta - \alpha)^3 = \frac{1}{2} \left(\frac{2\sqrt{15}}{3}k\right)^3
\]

\[
= \frac{20\sqrt{15}}{9}k^3
\]
(1) $f(x) = (ax^2 + bx + c)e^{-x}$ より

$$f'(x) = \{-ax^2 + (2a - b)x + b - c\}e^{-x} \cdots (*)$$

$f(x)$ が相異なる極値をもつための条件は、2 次方程式

$$-ax^2 + (2a - b)x + b - c = 0$$

が相異なる実数解をもつことであるから

$$-a \neq 0, \quad (2a - b)^2 - 4(-a)(b - c) > 0$$

よって $a \neq 0, \quad 4a^2 + b^2 - 4ac > 0$

(2) $f(x)$ がただ 1 つの極値をもつから、(*) より

$$-ax^2 + (2a - b)x + b - c$$

が x の 1 次式であるから $-a = 0$ すなわち $a = 0$

さらに、それが極大値であるから、1 次式

$$-bx + b - c$$

の 1 次の係数について $-b < 0$ すなわち $b > 0$

したがって、求める条件は $a = 0, \ b > 0$

また、$f(x)$ が極大値をとる x の値 x_0 は、$b \neq 0$ に注意して

$$-bx_0 + b - c = 0 \quad \text{これを解いて} \quad x_0 = 1 - \frac{c}{b}$$

(3) (2) の条件を満たすとき、曲線 $y = f(x)$、すなわち、$y = (bx + c)e^{-x}$ は、

直線 $y = 0$ と $x = -\frac{c}{b}$ で交わり、区間 $-\frac{c}{b} \leq x \leq 1 - \frac{c}{b}$ において、$b > 0$

より、$f(x) \geq 0$ であるから、求める面積 S は

$$S = \int_{-\frac{c}{b}}^{1-\frac{c}{b}} (bx + c)e^{-x} dx = \left[(bx + c + b)e^{-x} \right]_{-\frac{c}{b}}^{1-\frac{c}{b}}$$

$$= \left[(bx + c + b)e^{-x} \right]_{1-\frac{c}{b}}^{1-\frac{c}{b}} = be^{\frac{c}{b}} - 2be^{-1+\frac{c}{b}} = be^{\frac{c}{b}}(1 - 2e^{-1})$$

補足 部分積分法により、次式が得られる。

$$\int e^{kx}f(x) dx = \frac{e^{kx}}{k} \left\{ f(x) - \frac{f'(x)}{k} + \frac{f''(x)}{k^2} - \frac{f'''(x)}{k^3} + \cdots \right\} + C$$

$$\int e^{-x} f(x) dx = -e^{-x} \{ f(x) + f'(x) + f''(x) + f'''(x) + \cdots \} + C$$
（1）C_2とC_3の交点のx座標がaであるから $\cos a = \tan 2a$

ここで $\tan 2a = \frac{\sin 2a}{\cos 2a} = \frac{2\sin a \cos a}{1 - 2\sin^2 a}$

したがって $\cos a = \frac{2\sin a \cos a}{1 - 2\sin^2 a}$

$0 \leq a < \frac{\pi}{4}$より，$\cos a \neq 0$に注意して整理すると

$2\sin^2 a + 2\sin a - 1 = 0 \cdots (1)$

$0 \leq a < \frac{\pi}{4}$より，$0 \leq \sin a < \frac{1}{\sqrt{2}}$に注意して $\sin a = \frac{\sqrt{3} - 1}{2}$

（2）$0 < x < \frac{\pi}{4}$より，$0 < x < 2x < \frac{\pi}{2}$であるから

$\tan 2x > \tan x > \sin x$

よって $0 < x < \frac{\pi}{4}$において $\sin x < \tan 2x$

（3）求める面積Sは，右の図の斜線部分である。

\[
S = \int_0^a \tan 2x \, dx + \int_a^{\frac{\pi}{4}} \cos x \, dx - \int_0^{\frac{\pi}{4}} \sin x \, dx
\]

\[
= \left[-\frac{1}{2} \log |\cos 2x| \right]_0^a + \left[\sin x \right]_{\frac{\pi}{4}}^a + \left[\cos x \right]_{0}^{\frac{\pi}{4}}
\]

\[
= -\frac{1}{2} \log |\cos 2a| - \sin a + \sqrt{2} - 1
\]

ここで，(1)を利用して $\cos 2a = 1 - 2\sin^2 a = 2\sin a = \sqrt{3} - 1$

よって $S = -\frac{1}{2} \log(\sqrt{3} - 1) - \frac{\sqrt{3} - 1}{2} + \sqrt{2} - 1$

\[
= -\frac{1}{2} \log(\sqrt{3} - 1) - \frac{\sqrt{3}}{2} + \sqrt{2} - \frac{1}{2}
\]
(1) 加法定理により
\[
\cos \left(2\theta + \frac{\pi}{3} \right) = \cos 2\theta \cos \frac{\pi}{3} - \sin 2\theta \sin \frac{\pi}{3}
\]
\[
= \frac{1}{2} \cos 2\theta - \frac{\sqrt{3}}{2} \sin 2\theta
\]
\[
\cos \theta = \frac{3}{5} \left(0 \leq \theta \leq \frac{\pi}{2} \right) \text{であるから，} \sin \theta > 0 \text{より}
\]
\[
\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{3}{5} \right)^2} = \frac{4}{5},
\]
\[
\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(\frac{3}{5} \right)^2 - \left(\frac{4}{5} \right)^2 = -\frac{7}{25},
\]
\[
\sin 2\theta = 2 \sin \theta \cos \theta = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25}
\]
\[
\text{よって} \quad \cos \left(2\theta + \frac{\pi}{3} \right) = \frac{1}{2} \left(-\frac{7}{25} \right) - \frac{\sqrt{3}}{2} \cdot \frac{24}{25} = -\frac{7 + 24\sqrt{3}}{50}
\]

(2) 与えられた漸化式から
\[
\log_3 a_{n+1} - \log_3 a_n = 2^n \quad (n = 1, 2, 3, \ldots)
\]
\[n \geq 2 \text{のとき} \quad \sum_{k=1}^{n-1} \left(\log_3 a_{k+1} - \log_3 a_k \right) = \sum_{k=1}^{n-1} 2^k
\]
\[
\log_3 a_n - \log_3 a_1 = \frac{2(2^{n-1} - 1)}{2 - 1} \quad (a_1 = 1)
\]
\[
\log_3 a_n - \log_3 1 = 2^n - 2
\]
\[
a_n = 3^{2^n - 2}
\]
上式は，\(n = 1 \) のときも成立するから
\[
a_n = 3^{2^n - 2}
\]
(1) n が pq で割り切れるとき (p, q は相異なる素数)

p の倍数の個数は $\frac{n}{p}$, q の倍数の個数は $\frac{n}{q}$, pq の倍数の個数は $\frac{n}{pq}$

したがって, p の倍数または q の倍数の個数 N_1 は

$$N_1 = n - \left(\frac{n}{p} + \frac{n}{q} - \frac{n}{pq} \right) = n \left(\frac{1}{p} + \frac{1}{q} - \frac{1}{pq} \right)$$

(2) 一般に, $n = p^i q^j$ のとき (p, q は相異なる素数, i, j は自然数), n 以下の自然数で

p の倍数の個数は $\frac{n}{p}$, q の倍数の個数は $\frac{n}{q}$, pq の倍数の個数は $\frac{n}{pq}$

n 以下の自然数で, n と互いに素であるものの個数 N_2 は

$$N_2 = n - \left(\frac{n}{p} + \frac{n}{q} - \frac{n}{pq} \right) = n \left(1 - \frac{1}{p} \right) \left(1 - \frac{1}{q} \right)$$

ここでは, $n = 2p^m$ であるから

$$N_2 = n \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{p} \right) = p^m \left(1 - \frac{1}{p} \right)$$

(3) 一般に, $n = p^i q^j r^k$ のとき (p, q, r は相異なる素数, i, j, k は自然数), n 以下の自然数で

p の倍数の個数は $\frac{n}{p}$, q の倍数の個数は $\frac{n}{q}$, r の倍数の個数は $\frac{n}{r}$,

pq の倍数の個数は $\frac{n}{pq}$, qr の倍数の個数は $\frac{n}{qr}$, rp の倍数の個数は $\frac{n}{rp}$,

pqr の倍数の個数は $\frac{n}{pqr}$,

n 以下の自然数で, n と互いに素であるものの個数 N_3 は

$$N_3 = n - \left(\frac{n}{p} + \frac{n}{q} + \frac{n}{r} - \frac{n}{pq} - \frac{n}{qr} - \frac{n}{rp} + \frac{n}{pqr} \right)$$

$$= n \left(1 - \frac{1}{p} \right) \left(1 - \frac{1}{q} \right) \left(1 - \frac{1}{r} \right)$$

ここでは, $n = 6p^m = 2 \cdot 3p^m$ であるから (p は 5 以上の素数)

$$N_3 = n \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{p} \right) = 2p^m \left(1 - \frac{1}{p} \right)$$