平成 27 年度 九州工業大学 2 次試験後期日程 (数学問題)
情報工学部 平成 27 年 3 月 12 日

数 I・II・III・A・B (120 分)

1 座標平面上で原点 O と点 A(0, 2) を結ぶ線分 OA を直径とする円を C とし, 点 A から円 C の円周上を時計まわりに動く点 P を考える. ただし, \(\angle AOP = \theta \) とし, \(0 \leq \theta < \frac{\pi}{2} \) とする. 直線 OP と直線 \(y = 2 \) の交点を Q とする. さらに,点 Q を通り \(y \) 軸に平行な直線と, 点 P を通り \(x \) 軸に平行な直線の交点を R とする. このとき, 点 R の軌跡について以下の問いに答えよ.

(1) 点 R の座標を \(\theta \) を用いて表せ.
(2) \(t = \tan \theta \) とおいて, 点 R の座標を \(t \) を用いて表せ.
(3) (2) で求めた点 R の座標から変数 \(t \) を消去し, 点 R の軌跡の方程式 \(y = f(x) \) を求めよ.
(4) (3) で求めた曲線 \(y = f(x) \) の変曲点を求めよ.
(5) \(x \) 軸, \(y \) 軸, (3) で求めた曲線 \(y = f(x) \), および (4) で求めた変曲点を通る \(y \) 軸に平行な直線で囲まれた部分の面積を求めよ.

2 \(a, b \) を実数とし, 座標平面上の点 \(A(a, b) \) および放物線 \(C : y = x^2 \) を考える. 以下の問いに答えよ.

(1) 放物線 \(C \) 上の点 \(P(t, t^2) \) における法線が点 A を通るための条件を \(a, b, t \) を用いて表せ.
(2) \(p, q \) を実数とする. 3 次方程式 \(x^3 - 3px + q = 0 \) がちょうど 2 つの異なる実数解をもつための条件を \(p, q \) を用いて表せ.
(3) 点 A が放物線 \(C \) 上にある場合を考える. 放物線 \(C \) の法線で点 A を通るものがちょうど 2 本存在するような点 A があれば, すべて求めよ.
実数 c と自然対数の底 e に対して、関数 $f_1(x), f_2(x), f_3(x), \cdots, f_n(x), \cdots$ を

$$f_1(x) = (x^2 - 2cx + 5c)e^x \quad f_{n+1}(x) = f'_n(x)$$

と定める。さらに、数列 $\{a_n\}, \{b_n\}$ を次の式で定める。

$$f_n(x) = (x^2 + a_n x + b_n)e^x \quad (n = 1, 2, 3, \cdots)$$

以下の問いに答えよ。

(1) a_{n+1} を a_n を用いて表し、b_{n+1} を a_n, b_n を用いて表せ。
(2) a_n と b_n をそれぞれ n, c を用いて表せ。
(3) p, q を実数とする。曲線 $y = (x^2 + px + q)e^x$ が変曲点をもつための条件を p, q を用いて表せ。
(4) c の値によらず曲線 $y = f_n(x)$ が変曲点をもつような最小の n を求めよ。

自然数 n に対して、n 個の 1 と n 個の -1 を $(a_1, a_2, a_3, \cdots, a_{2n})$ と 1 列に並べるとときの並べ方を考え、a_1 から a_k ($k \leq 2n$) までの和を $S(k)$ とし、次に

$$S(k) = \sum_{i=1}^{k} a_i$$

とするとき、次の条件 (*) を定める。

(*) すべての k ($k = 1, 2, 3, \cdots, 2n$) に対して $S(k) \geq 0$ である。

条件 (*) をみたす並べ方の総数を $f(n)$ とする。たとえば、$n = 1$ のとき、条件 (*) をみたす並べ方は $(1, -1)$ のみであるので、$f(1) = 1$ である。以下の問いに答えよ。

(1) $f(2)$ を求めよ。
(2) $n = 3$ のとき、条件 (*) をみたす並べ方のうち $S(k) = 0$ が成立する最小の k が 2 となる並べ方をすべて求め、さらに $f(3)$ を求めよ。
(3) 条件 (*) をみたす並べ方のうち $S(k) = 0$ が成立する最小の k が $2n$ となる並べ方の総数を $g(n)$ とする。このとき、$g(4)$ と $g(5)$ を求めよ。
(4) $f(6)$ を求めよ。
正解

(1) M(0, 1) とおくと
\[\overrightarrow{MP} = (\sin 2\theta, \cos 2\theta), \]
\[\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP} = (0, 1) + (\sin 2\theta, \cos 2\theta) \]
\[= (\sin 2\theta, 1 + \cos 2\theta), \]
\[\overrightarrow{OQ} = (2 \tan \theta, 2) \]

Q の x 座標，P の y 座標がそれぞれ R の x 座標，y 座標であるから

\[\overrightarrow{R} = (2 \tan \theta, 1 + \cos 2\theta) \]

(2) \[\cos 2\theta = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \text{ より} \]
\[1 + \cos 2\theta = 1 + \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{2}{1 + \tan^2 \theta} \]
\[0 \leq \theta < \frac{\pi}{2} \text{ より，} t = \tan \theta \text{ とおくと (} t \geq 0) \]

(3) \[t \geq 0 \text{ より，} x = 2t, y = \frac{2}{1 + t^2} \text{ とおくと (} x \geq 0), t = \frac{x}{2} \text{ より} \]
\[y = \frac{2}{1 + (\frac{x}{2})^2} = \frac{8}{x^2 + 4} \]

よって，求める軌跡の方程式は \[y = \frac{8}{x^2 + 4} \text{ (} x \geq 0) \]

(4) (3) の結果から，\[y = 8(x^2 + 4)^{-1} \text{ を微分すると} \]
\[y' = -8(x^2 + 4)^{-2} \cdot 2x = -16x(x^2 + 4)^{-2}, \]
\[y'' = -16\{(x^2 + 4)^{-2} + x \cdot (-2)(x^2 + 4)^{-3} \cdot 2x \}
\[= -16(x^2 + 4)^{-3}\{(x^2 + 4) - 4x^2\} = 16(3x^2 - 4)(x^2 + 4)^{-3} \]

したがって，\[0 < x < \frac{2}{\sqrt{3}} \text{ のとき } y'' < 0, \frac{2}{\sqrt{3}} < x \text{ のとき } y'' > 0 \]
よって，変曲点は \[\left(\frac{2}{\sqrt{3}}, \frac{3}{2} \right) \]

注意 \[y' = 0 \text{ は極値をとる点であるための必要条件であるように (前後で } y' \text{ の符号が変化しなければならない)， } y'' = 0 \text{ は変曲点であるための必要条件である。変曲点ではその前後で } y'' \text{ の符号が変化しなければならない。} \]
(5) \(x = 2t \), \(t = \tan \theta \) より, \(x = 2 \tan \theta \) とおくと

\[
\frac{dx}{d\theta} = 2 \frac{1}{\cos^2 \theta} \quad \frac{d\theta}{dx} = \frac{1}{2} \frac{\cos \theta}{\sin \theta}
\]

求める面積を \(S \) とすると

\[
S = \int_{\tan^{-1} \frac{\sqrt{3}}{3}}^{\frac{\pi}{6}} \frac{8}{x^2 + 4} dx
= \int_{0}^{\frac{\pi}{6}} \frac{2}{4 \tan^2 \theta + 4} \cos^2 \theta d\theta
= 4 \int_{0}^{\frac{\pi}{6}} d\theta = \frac{2}{3} \pi
\]

2 (1) \(y = x^2 \) を微分すると \(y' = 2x \)

\(C \) 上の点 \(P(t, t^2) \) における接ベクトルを \(\vec{v} = (1, 2t) \), 法線上の任意の点を \(Q(x, y) \) とおく。\(\vec{v} \cdot \overrightarrow{PQ} = 0 \) より, 法線の方程式は

\[1(x-t) + 2t(y-t^2) = 0 \quad \text{ゆえに} \quad x + 2ty - 2t^3 - t = 0\]

この法線上に \(A(a, b) \) があるから \(a + 2tb - 2t^3 - t = 0 \)

(2) \(f(x) = x^3 - 3px + q = 0 \) とおくと, 3次方程式 \(f(x) = 0 \) がちょうど2つの異なる実数解をもつことと3次関数 \(y = f(x) \) の極値が0であることは同値である。

\[f'(x) = 3x^2 - 3p = 3(x^2 - p)\]

\(f'(x) = 0 \) が異なる2つの実数解をもつから, \(p > 0 \) に注意して

\[f(\pm \sqrt{p}) = \mp 2p\sqrt{p} + q = 0 \quad \text{よって} \quad q^2 = 4p^3 \quad (p > 0)\]

(3) (1) の結果から

\[t^3 - \left(b - \frac{1}{2}\right)t - \frac{1}{2}a = 0\]

この \(t \) に関する3次方程式が異なる2つの実数解をもつから

\[3p = b - \frac{1}{2}, \quad q = -\frac{1}{2}a\]

とおくと, (2) の結果から

\[
\left(-\frac{1}{2}a\right)^2 = 4 \left(\frac{2b - 1}{6}\right)^3 \quad \left(b > \frac{1}{2}\right)
\]

\(A \) は \(C \) 上にあるから, \(b = a^2 \cdots \)

\[
\frac{1}{4}b = 4 \left(\frac{2b - 1}{6}\right)^3 \quad \text{ゆえに} \quad \left(\frac{2b - 1}{3}\right)^3 - \frac{b}{2} = 0
\]
ここで, \(u = \frac{2b - 1}{3} \ldots \) とおくと \(u > 0 \)

\[
\begin{align*}
 u^3 - \frac{3u + 1}{4} &= 0 \quad \text{ゆえに} \quad (u - 1)(2u + 1)^2 = 0
\end{align*}
\]

\(u > 0 \) より \(u = 1 \) ①, ②より 点 \(A \) の座標は \((\pm \sqrt{2}, 2) \)

3 (1) \(f_n(x) = (x^2 + a_nx + b_n)e^x \) を微分すると

\[
 f_n'(x) = (2x + a_n)e^x + (x^2 + a_nx + b_n)e^x
 = \{x^2 + (a_n + 2)x + a_n + b_n\}e^x
\]

\(f_{n+1}(x) = f'_n(x) \) であるから \(a_{n+1} = a_n + 2, \ b_{n+1} = a_n + b_n \)

(2) \(f_1(x) = (x^2 - 2cx + 5c)e^x \) より \(a_1 = -2c, \ b_1 = 5c \)

(1) の結果から, \(\{a_n\} \) は初項 \(-2c\), 公差 \(2\) の等差数列であるから

\[
a_n = -2c + (n - 1) \cdot 2 = 2n - 2c - 2
\]

また, \(b_{n+1} - b_n = 2n - 2(c + 1) \) であるから, \(n \geq 2 \) のとき

\[
b_n = b_1 + \sum_{k=1}^{n-1} \{2k - 2(c + 1)\}
 = 5c + n(n - 1) - 2(c + 1)(n - 1)
 = n^2 - (2c + 3)n + 7c + 2
\]

これは, \(n = 1 \) のときも成立するから \(b_n = n^2 - (2c + 3)n + 7c + 2 \)

別解 ライブニッタの公式を \(f_1(x) = (x^2 - 2cx + 5c)e^x \) に適用すると \(n \geq 3 \)

\[
f_n(x) = f_1^{(n-1)}(x) = \sum_{k=0}^{n-1} C_k(x^2 - 2cx + 5c)^{(n-1-k)}(e^x)^{(k)}
 = n-1C_{n-1}C_{n-1}C_{n-3}(x^2 - 2cx + 5c)^{(n-3)}
 + n-1C_{n-1}C_{n-2}(x^2 - 2cx + 5c)^{(n-2)}
 + n-1C_{n-1}(x^2 - 2cx + 5c)(e^x)^{(n-1)}
 = (n - 1)(n - 2)e^x + (n - 1)(2x - 2c)e^x + (x^2 - 2cx + 5c)e^x
 = \{x^2 + (2n - 2c - 2)x + n^2 - (2c + 3)n + 7c + 2\}e^x
\]

\(f_2(x) = f_1'(x) = \{x^2 + (2 - 2c)x + 3c\}e^x \) より, 上式は, \(n = 1, 2 \) のときも成立するから \(a_n = 2n - 2c - 2, \ b_n = n^2 - (2c + 3)n + 7c + 2 \)
(3) \(y = (x^2 + px + q)e^x \) より

\[
y' = (2x + p)e^x + (x^2 + px + q)e^x = \{x^2 + (p + 2)x + (p + q)\}e^x,
\]
\[
y'' = \{2x + (p + 2)\}e^x + \{x^2 + (p + 2)x + (p + q)\}e^x
\]
\[
= \{x^2 + (p + 4)x + (2p + q + 2)\}e^x
\]

変曲点をもつための条件は、2次方程式 \(x^2 + (p + 4)x + (2p + q + 2) = 0 \)
が異なる2つの実数解をもつことであるから、係数について

\((p + 4)^2 - 4 \cdot 1 \cdot (2p + q + 2) > 0 \) ゆえに \(4q < p^2 + 8 \)

補足 ライプニッツの公式を \(y = (x^2 + px + q)e^x \) に適用すると

\[
y'' = (x^2 + px + q)''e^x + 2(x^2 + px + q)'(e^x)' + (x^2 + px + q)(e^x)''
\]
\[
= 2e^x + 2(2x + p)e^x + (x^2 + px + q)e^x
\]
\[
= \{x^2 + (p + 4)x + (2p + q + 2)\}e^x
\]

\(y'' = 0 \) は変曲点であるための必要条件であり、変曲点であるためには、その前後で \(y'' \) の符号が変化しなければならない。したがって、2次方程式

\(x^2 + (p + 4)x + (2p + q + 2) = 0 \)

は、異なる2つの実数解をもたなければならない。実数解であっても、重
解であれば、その前後で \(y'' > 0 \) となり、不適．

(4) \(y = f_n(x) \) が変曲点をもつとき、(3) の結果から \(4b_n < a_n^2 + 8 \)

これに (2) の結果を代入すると

\[
4\{n^2 - (2c + 3)n + 7c + 2\} < (2n - 2c - 2)^2 + 8
\]
\[
n^2 - (2c + 3)n + 7c < (n - c - 1)^2
\]
\[
c^2 - 5c + n + 1 > 0
\]
\[
\left(\frac{c}{2} - \frac{5}{2} \right)^2 + n - \frac{21}{4} > 0
\]

任意の \(c \) に対して、これを満たす最小の自然数 \(n \) は \(n = 6 \)
(1) n 個の 1 と n 個の -1 の並びに対して，座標平面上を原点から点 $(2n, 0)$ まで，最も近い格子点上をそれぞれ右斜め 45°，右斜め -45° の方向に移動する折れ線グラフを考える。

条件 (*) にしたがって，x 軸より下側に移動することなく，上の図のように，$f(2)$ は原点から点 $(4, 0)$ まで移動する折れ線グラフの総数であるから

$$f(2) = 2$$

(2) 求める並べ方に相当する折れ線グラフは，原点 → 点 $(2, 2)$ → 点 $(4, 0)$ → $(6, 0)$ を通るものであるから

$$(1, 1, -1, -1, 1, -1)$$

また，$f(3)$ は原点から点 $(6, 0)$ までの折れ線グラフの総数であるから

$$f(3) = 5$$

(3) $g(4)$ は原点から点 $(8, 0)$ までの折れ線グラフで，点 $(2, 0), (4, 0), (6, 0)$ を通らないものの総数である．したがって，点 $(1, 1)$ から点 $(7, 1)$ までの折れ線グラフで x 軸を通らないものであるから

$$g(4) = f(3) = 5$$

同様に，$g(5)$ は原点から点 $(10, 0)$ までの折れ線グラフで，点 $(2, 0), (4, 0), (6, 0), (8, 0)$ を通らないものの総数である．したがって，点 $(1, 1)$ から点 $(9, 1)$ までの折れ線グラフで x 軸を通らないものであるから

$$g(5) = f(4) = 14$$

(4) (1) と同様に，$f(6)$ は原点から点 $(12, 0)$ まで移動する折れ線グラフの総数であるから

$$f(6) = 132$$