平成 29 年度 福岡教育大学 2 次試験後期日程 (数学問題)
教育学部中等教育 (数学専攻) 平成 29 年 3 月 12 日

• 数 I・II・III・A・B (120 分)

１ 次の問いに答えよ。

(1) 三角形 ABC において \(\overrightarrow{AC} \cdot \overrightarrow{AB} = \alpha \), \(\overrightarrow{BC} \cdot \overrightarrow{BA} = \beta \)とする。辺 AB の長さを \(\alpha \) と \(\beta \) を用いて表せ。

(2) \((z + i)^2 = 8i\) を満たす複素数 \(z\) をすべて求めよ。ただし，\(i\) は虚数単位とする。

(3) \(m \), \(n\) が自然数のとき，定積分 \(\int_0^{2\pi} \cos mx \cos nx \, dx\) を求めよ。

２ 次の問いに答えよ。

(1) 不等式 \(2x^2 + 2y^2 - 6x - 6y + \frac{9}{2} \leq 0\) が表す領域を図示せよ。

(2) 不等式 \(|x| + |y| \leq 2\) が表す領域を図示せよ。

(3) \(a > 0\) とし，次の条件 \(p \), \(q\) を考える。

\(p\)：実数の組 \((x, y)\) が \(2x^2 + 2y^2 - 6x - 6y > a^2 - 9\) を満たす

\(q\)：実数の組 \((x, y)\) が \(|x| + |y| > 2a\) を満たす

このとき，\(p\) が \(q\) であるための必要条件になる \(a\) の範囲を求めよ。

３ \(c \neq 1\) とする。数列 \(\{a_n\}\) は

\[
a_1 = 1, \quad a_{n+1} = ca_n + \sum_{k=0}^{n} c^k \quad (n = 1, 2, 3, \cdots)
\]

を満たす。次の問いに答えよ。

(1) \(a_2, a_3\) を求めよ。

(2) \(n\) を自然数とする。数学的帰納法を用いて

\[
a_{n+1} - a_n = (n + 1)c^n
\]

が成立することを示せ。

(3) \(a_n\) を \(c\) と \(n\) を用いて表せ。
曲線 $y = 8^x$ 上の点 P をとり、その x 座標を t ($-1 < t < 0$) とする。原点 O を通り、経分 OP と垂直な直線を ℓ とする。点 $Q(0, 1)$ から ℓ に下ろした垂線と ℓ との交点を R とする。次の問いに答えよ。

1. 点 R の座標を t を用いて表せ。
2. $OP^2 - QR^2$ を t を用いて表せ。
3. $OP = QR$ となる t が $-\frac{1}{2} < t < -\frac{1}{3}$ の範囲にあることを示せ。
正解

1. \(|\overrightarrow{AB}|^2 = \overrightarrow{AB} \cdot \overrightarrow{AB} = (\overrightarrow{AC} + \overrightarrow{CB}) \cdot \overrightarrow{AB} = \overrightarrow{AC} \cdot \overrightarrow{AB} + \overrightarrow{CB} \cdot \overrightarrow{AB}
 = \overrightarrow{AC} \cdot \overrightarrow{AB} + \overrightarrow{BC} \cdot \overrightarrow{BA} = \alpha + \beta
 \]
 よって \(AB = \sqrt{\alpha + \beta}\)

2. \((z + i)^2 = 8i \cdots (*)\)

 \(8i = 8 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = \left\{ 2\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right\}^2 = \{2(1+i)\}^2\)

 （*）より \((z + i)^2 = \{2(1+i)\}^2\) ゆえに \(z + i = \pm2(1+i)\)
 よって \(z = 2 + i, -2 - 3i\)

3. \(\cos mx \cos nx = \frac{1}{2} \{ \cos(m + n)x + \cos(m - n)x \}\) より

 \(m \neq n\) のとき

 \[
 \int_0^{2\pi} \cos mx \cos nx \, dx = \frac{1}{2} \int_0^{2\pi} \{ \cos(m + n)x + \cos(m - n)x \} \, dx
 = \frac{1}{2} \left[\frac{\sin(m + n)x}{m + n} + \frac{\sin(m - n)x}{m - n} \right]_0^{2\pi} = 0
 \]

 \(m = n\) のとき

 \[
 \int_0^{2\pi} \cos mx \cos nx \, dx = \frac{1}{2} \int_0^{2\pi} (\cos 2mx + 1) \, dx
 = \frac{1}{2} \left[\frac{\sin 2mx}{2m} + x \right]_0^{2\pi} = \pi
 \]
(1) \(2x^2 + 2y^2 - 6x - 6y + \frac{9}{2} \leq 0\) より

\[
\left(x - \frac{3}{2} \right)^2 + \left(y - \frac{3}{2} \right)^2 \leq \frac{9}{4}
\]

不等式の表す領域は、右の図の斜線部分で、
中心 \(\left(\frac{3}{2}, \frac{3}{2} \right)\)，半径 \(\frac{3}{2}\) の円の内部と円周.

(2) \(|x| + |y| \leq 2\) より \(|y| \leq 2 - |x| \) \cdots (1)

\(|y| \geq 0\) より \(2 - |x| \geq 0\)

すなわち \(-2 \leq x \leq 2 \) \cdots (2)

(1)，(2) より

\(|x| - 2 \leq y \leq 2 - |x| \) \((-2 \leq x \leq 2)\)

不等式の表す領域は、右の図の斜線部分．
ただし、境界線を含む．

(3) \(p\) が \(q\) であるための必要条件であるとき，
\(q \Rightarrow p\) であるから，\(\overline{p} \Rightarrow \overline{q}\) となる \(a\) の範囲を求める．

\(\overline{p}\)：実数の組 \((x, y)\) が \(2x^2 + 2y^2 - 6x - 6y \leq a^2 - 9\)，すなわち，

\[
\left(x - \frac{3}{2} \right)^2 + \left(y - \frac{3}{2} \right)^2 \leq \frac{a^2}{2}
\]

\(\overline{q}\)：実数の組 \((x, y)\) が \(|x| + |y| \leq 2a\) を満たす

このとき，\(\overline{p}\) の点 \(\left(\frac{a + 3}{2}, \frac{a + 3}{2} \right)\) が \(\overline{q}\) を満たせばよい．
\(a > 0\) であるから

\[
\left| \frac{a + 3}{2} \right| + \left| \frac{a + 3}{2} \right| \leq 2a
\]

ゆえに \(a + 3 \leq 2a\) よって \(a \geq 3\)
(1) \(a_1 = 1, \ a_{n+1} = ca_n + \sum_{k=0}^{n} c^k \ (n = 1, 2, 3, \cdots)\)

\[
a_2 = ca_1 + 1 + c = c\cdot1 + 1 + c = 1 + 2c, \\
a_3 = ca_2 + 1 + c^2 = c(1 + 2c) + 1 + c^2 = 1 + 2c + 3c^2
\]

(2)

\[a_{n+1} - a_n = (n + 1)c^n \cdots(*)\]

[1] \(n = 1\) のとき，\(a_2 - a_1 = (1 + 2c) - 1 = 2c\) より，(*) は成立する．

[2] \(n = j\) のとき，(*) が成立する，すなわち

\[a_{j+1} - a_j = (j + 1)c^j\]

であると仮定すると，与えられた漸化式から

\[a_{j+2} - a_{j+1} = ca_{j+1} + \sum_{k=0}^{j+1} c^k - \left(ca_j + \sum_{k=0}^{j} c^k \right) \]

\[= c(a_{j+1} - a_j) + c^{j+1} \]

\[= c(j + 1)c^j + c^{j+1} = (j + 2)c^{j+1} \]

よって，\(n = j + 1\) のときも(*) が成立する．

[1], [2] から，すべての自然数 \(n\) について，(*) は成立する．

(3) \((n + 1)c^{n+1} - nc^n = \{(c - 1)n + c\}c^n = (c - 1)(n + 1)c^n + c^n\) より

\[(n + 1)c^n = \frac{(n + 1)c^{n+1} - nc^n}{c - 1} - \frac{c^n}{c - 1}\]

(2) の結果より，\(n \geq 2\) のとき

\[
\sum_{k=1}^{n-1} (a_{k+1} - a_k) = \sum_{k=1}^{n-1} \left\{ \frac{(k + 1)c^{k+1} - kc^k}{c - 1} - \frac{c^k}{c - 1} \right\}
\]

\[a_n - 1 = \frac{nc^n - c}{c - 1} - \frac{c(e^{n-1} - 1)}{(c - 1)^2}\]

\[a_n = \frac{(c - 1)(nc^n - c) - c(e^{n-1} - 1) + (c - 1)^2}{(c - 1)^2}\]

\[= \frac{(c - 1)n - 1}{(c - 1)^2}c^n + 1\]

これは，\(n = 1\) のときも成立するから

\[a_n = \frac{(c - 1)n - 1}{(c - 1)^2}c^n + 1\]
(1) 曲線 \(y = 8^t \) 上の点 \(P(t, 8^t) \) に対して，原点 \(O \) を
通じ，線分 \(OP \) に垂直な直線 \(\ell \) は

\[tx + 8^t y = 0 \]

また，点 \(Q(0, 1) \) を通じ，\(\ell \) に垂直な直線は

\[8^t x - ty + t = 0 \]

上式および \(\ell \) の方程式を解くと

\[R \left(-\frac{t\cdot8^t}{t^2 + 8^t}, \frac{t^2}{t^2 + 8^t} \right) \]

(2) (1) の結果から

\[
OP^2 - QR^2 = t^2 + 8^t - \left\{ \left(-\frac{t\cdot8^t}{t^2 + 8^t}\right)^2 + \left(\frac{t^2}{t^2 + 8^t} - 1\right)^2 \right\} \\
= t^2 + 8^t - \frac{8^t}{t^2 + 8^t} = t^2 + 2^6t - \frac{2^6t}{t^2 + 2^6t}
\]

(3) \(f(t) = t^2 + 2^6t - \frac{2^6t}{t^2 + 2^6t} \) とおくと，\(f(t) \) は \(-1/2 \leq t \leq -1/3\) で連続で

\[
\begin{align*}
 f \left(-\frac{1}{2}\right) &= \frac{1}{4} + \frac{1}{8} - \frac{1}{4} + \frac{1}{8} = \frac{1}{24} > 0, \\
 f \left(-\frac{1}{3}\right) &= \frac{1}{9} + \frac{1}{4} - \frac{1}{9} + \frac{1}{4} = -\frac{155}{468} < 0
\end{align*}
\]

中間値の定理により

\[
f(c) = 0 \quad \left(-\frac{1}{2} < c < -\frac{1}{3} \right)
\]

を満たす \(c \) が存在する．このとき，\(OP^2 - QR^2 = 0 \) すなわち，\(OP = QR \)．