平成29年度 名古屋大学 2次試験前期日程 (数学 問題) 150 分
理・工・農・医・情報文化 (自然情報) 数I・II・III・A・B

[1] 不等式 $0 < a < 1$ を満たす定数 a に対して，曲線 $C : y = a - 1 - \log x \ (x > 0)$ を考える。s を正の実数とし，曲線 C 上の点 $P(s, a - 1 - \log s)$ における接線がx 軸，y 軸と交わる点をそれぞれ $(u(s), 0)$，$(0, v(s))$ とする。このとき，次の間に答えよ。必要があれば，$\lim_{x \to +0} x \log x = 0$ を証明なしで使ってよ。

(1) 関数 $u(s)$，$v(s)$ を s の式で表せ。
(2) 関数 $t = u(s)$，$t = v(s)$ の2つのグラフを，増減・凹凸および交点の座標
に注意して，同じ st 平面上に図示せよ。
(3) 関数 $t = u(s)$，$t = v(s)$ の2つのグラフで囲まれた図形を t 軸のまわりに
1 回転させてできる立体の体積を求めよ。

[2] 下図のような立方体を考える。この立方体の8つの頂点の上を点 P が次の規則
で移動する。時刻0では点 P は頂点 A にいる。時刻1増えるごとに点 P は，
今いる頂点と辺で結ばれている頂点に等確率で移動する。例えば時刻 n で点 P
が頂点 H にいるとすると，時刻 $n+1$ では，それぞれ $\frac{1}{3}$ の確率で頂点 D，E，G
のいずれかにいる。自然数 $n \geq 1$ に対して，(i) 点 P が時刻 n までの間一度も
頂点 A に戻らず，かつ時刻 n で頂点 B，D，E のいずれかにいる確率を p_n，(ii)
点 P が時刻 n までの間一度も頂点 A に戻らず，かつ時刻 n で頂点 C，F，H
のいずれかにいる確率を q_n，(iii) 点 P が時刻 n までの間一度も頂点 A に戻らず，
かつ時刻 n で頂点 G にいる確率を r_n とする。このとき，次の間に答えよ。

(1) p_2，q_2，r_2 と p_3，q_3，r_3 を求めよ。
(2) $n \geq 2$ のとき，p_n，q_n，r_n を求めよ。
(3) 自然数 $m \geq 1$ に対して，点 P が時刻 $2m$ で頂点 A に初めて戻る確率 s_m を
求めよ。
(4) 自然数 $m \geq 2$ に対して，点 P が時刻 $2m$ で頂点 A に戻るのがちょうど2
回目となる確率 t_m とする。このとき，$t_m < s_m$ となる m をすべて求めよ。
xyz空間の2点A(0, 0, 2), P(a, b, 0)を通る直線をlとする. また, 点(2, 0, 0)を中心とし, 半径が\(\sqrt{2}\)である球面をSで表し, Sのうちz座標が\(z > 0\)を満たす部分をTとする. このとき, 次の間に答えよ.

(1) l上に点Qがある. 実数\(t\)を\(\overrightarrow{AQ} = t\overrightarrow{AP}\)で定めるとき, 点Qの座標を\(a, b, t\)を使って表せ.

(2) lがSと異なる2点で交わるような実数\(a, b\)に関する条件を求め, \(ab\)平面上に図示せよ.

(3) lがTと相異なる2点で交わるような実数\(a, b\)に関する条件を求め, \(ab\)平面上に図示せよ.

nを自然数とする. 0でない複素数からなる集合Mが次の条件(I), (II), (III)を満たしている.

(I) 集合Mは\(n\)個の要素からなる.

(II) 集合Mの要素\(z\)に対して, \(\frac{1}{z}\)と\(-z\)はともに集合Mの要素である.

(III) 集合Mの要素\(z, w\)に対して, その積\(zw\)は集合Mの要素である. ただし, \(z = w\)の場合も含める.

このとき, 次の間に答えよ.

(1) 1および\(-1\)は集合Mの要素であることを示せ.

(2) \(n\)は偶数であることを示せ.

(3) \(n = 4\)のとき, 集合Mは一通りに定まることを示し, その要素をすべて求めよ.

(4) \(n = 6\)のとき, 集合Mは一通りに定まることを示し, その要素をすべて求めよ.
解答例

(1) \(y = a - 1 - \log x \) を微分すると \(y' = -\frac{1}{x} \)

\(C \) 上の点 \(P(s, a - 1 - \log s) \) における接線の方程式は

\[y - (a - 1 - \log s) = -\frac{1}{s}(x - s) \]

すなわち

\[y = -\frac{x}{s} + a - \log s \]

\(y = 0 \) を代入すると \(x = s(a - \log s) \) ゆえに \(u(s) = s(a - \log s) \)

\(x = 0 \) を代入すると \(y = a - \log s \) ゆえに \(v(s) = a - \log s \)

(2) \(u(s) = s(a - \log s) \) より \(u'(s) = a - 1 - \log s, \ u''(s) = -\frac{1}{s} \)

<table>
<thead>
<tr>
<th>(s)</th>
<th>(0)</th>
<th>(e^{a-1})</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u'(s))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(u''(s))</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(u(s))</td>
<td>(e^{a-1})</td>
<td>極大</td>
<td>((0))</td>
</tr>
</tbody>
</table>

\[\lim_{s \to +0} u(s) = \lim_{s \to +0} (sa - s \log s) = 0, \quad \lim_{s \to \infty} u(s) = \lim_{s \to \infty} s(a - \log s) = -\infty \]

\(v(s) = a - \log s \) より \(v'(s) = -\frac{1}{s}, \ v''(s) = \frac{1}{s^2} > 0 \)

したがって, \(v(s) \) は下に凸で単調減少.

\(t = u(s), \ t = v(s) \) から \(t \) を消去すると

\[s(a - \log s) = a - \log s \]

ゆえに \((s - 1)(a - \log s) = 0 \)

これを解いて \(s = 1, \ e^a \)

2曲線 \(t = u(s), \ t = v(s) \) の交点の座標は

\((1, a), \ (e^a, 0) \)

0 < \(a < 1 \) より, \(t = u(s), \ t = v(s) \) のグラフは, 右の図のようになる.
(3) 求める立体の体積を \(V \) とすると、(2) のグラフから

\[
\frac{V}{2\pi} = \int_1^e s\{ u(s) - v(s) \} ds = \int_1^e s(s-1)(a-\log s) ds
\]

\[
= \int_1^e \left(\frac{s^3}{3} - \frac{s^2}{2} \right)(a-\log s) ds
\]

\[
= \left[\left(\frac{s^3}{3} - \frac{s^2}{2} \right)(a-\log s) \right]_1^e - \int_1^e \left(\frac{s^3}{3} - \frac{s^2}{2} \right) \left(-\frac{1}{s} \right) ds
\]

\[
= \frac{a}{6} + \left[\frac{s^3}{9} - \frac{s^2}{4} \right]_1^e = \frac{1}{9}e^{3a} - \frac{1}{4}e^{2a} + \frac{5}{36} + \frac{a}{6}
\]

よって

\[
V = \frac{\pi}{18}(4e^{3a} - 9e^{2a} + 6a + 5)
\]

パウムクーヘン型求積法

\[
a \leq x \leq b \] の範囲で \(f(x) \geq 0 \) のとき、\(y = f(x) \) のグラフと \(x \) 軸および2直線 \(x = a, x = b \) で囲まれた部分を \(y \) 軸のまわりに1回転してできる立体の体積 \(V \) は

\[
V = 2\pi \int_a^b xf(x) dx
\]

補足 まず、\(0 < x \leq 1 \) のとき、\(-\frac{2}{\sqrt{x}} < \log x \) を示す。

\[
g(x) = \log x + \frac{2}{\sqrt{x}} \quad (0 < x \leq 1) \] とおくと

\[
0 < x < 1 \] のとき、

\[
g'(x) = \frac{1}{x} - \frac{1}{x\sqrt{x}} = \frac{\sqrt{x} - 1}{x\sqrt{x}} < 0
\]

\(g(x) \) は単調減少で、\(g(1) = 2 \) であるから

\[
g(x) > 0 \] ゆえに、\(\log x + \frac{2}{\sqrt{x}} > 0
\]

すなわち、\(0 < x < 1 \) のとき、\(-\frac{2}{\sqrt{x}} < \log x < 0\)であるから，はさみうちの原理により

\[
\lim_{x \to +0} x \log x = 0
\]
(1) 与えられた規則により、次の確率漸化式が成立する。

\[
\begin{align*}
p_1 &= 1, \quad q_1 = 0, \quad r_1 = 0 \\
(p_{n+1} &= \frac{2}{3} q_n) \\
q_{n+1} &= \frac{2}{3} p_n + r_n \quad (n = 1, 2, 3, \cdots) \\
r_{n+1} &= \frac{1}{3} q_n
\end{align*}
\]

(*) に \(n = 1 \) を代入すると

\[
p_2 = \frac{2}{3} q_1 = 0, \quad q_2 = \frac{2}{3} p_1 + r_1 = \frac{2}{3}, \quad r_2 = \frac{1}{3} q_1 = 0
\]

(*) に \(n = 2 \) を代入すると、上の結果により

\[
p_3 = \frac{2}{3} q_2 = \frac{4}{9}, \quad q_3 = \frac{2}{3} p_2 + r_2 = 0, \quad r_3 = \frac{1}{3} q_2 = \frac{2}{9}
\]

(2) (*) の第 2 式から

\[
q_{n+2} = \frac{2}{3} p_{n+1} + r_{n+1}
\]

これに (*) の第 1 式、第 3 式を代入すると

\[
q_{n+2} = \frac{2}{3} q_n + \frac{1}{3} q_n \quad すなわち \quad q_{n+2} = \frac{7}{9} q_n
\]

(i) \(n \) が奇数のとき \((n \geq 1) \)

\[
q_n = q_1 \left(\frac{7}{9} \right)^{\frac{n-1}{2}} = 0
\]

\[
p_{n+1} = \frac{2}{3} q_n = 0, \quad r_{n+1} = \frac{1}{3} q_n = 0
\]

(ii) \(n \) が偶数のとき \((n \geq 2) \)

\[
q_n = q_2 \left(\frac{7}{9} \right)^{\frac{n-2}{2}} = \frac{2}{3} \left(\frac{7}{9} \right)^{\frac{n-2}{2}}
\]

\[
p_{n+1} = \frac{2}{3} q_n = \frac{2}{3} \frac{7}{3} \left(\frac{7}{9} \right) = \frac{4}{9} \left(\frac{7}{9} \right)^{\frac{n-2}{2}}
\]

\[
r_{n+1} = \frac{1}{3} q_n = \frac{1}{3} \frac{2}{3} \left(\frac{7}{9} \right) = \frac{2}{9} \left(\frac{7}{9} \right)^{\frac{n-2}{2}}
\]

(i), (ii) の結果から

\(n \) が偶数のとき

\[
p_n = 0, \quad q_n = \frac{2}{3} \left(\frac{7}{9} \right)^{\frac{n-2}{2}}, \quad r_n = 0
\]

\(n \) が奇数のとき

\[
p_n = \frac{4}{9} \left(\frac{7}{9} \right)^{\frac{n-2}{2}}, \quad q_n = 0, \quad r_n = \frac{2}{9} \left(\frac{7}{9} \right)^{\frac{n-2}{2}} \quad (n \neq 1)
\]
(3) $s_m = \frac{1}{3}p_{2m-1}$ であるから

\[s_1 = \frac{1}{3}p_1 = \frac{1}{3}, \]

\[s_m = \frac{1}{3}p_{2m-1} = \frac{1}{3} \cdot \left(\frac{7}{9} \right)^{\frac{(2m-1)-3}{2}} = \frac{4}{27} \left(\frac{7}{9} \right)^{m-2} \quad (m \geq 2) \]

(4) 点 P が時刻 $2k$ ($1 \leq k \leq m - 1$) および $2m$ のときに限り点 A に戻る確率であるから，$a = \frac{4}{27}, \; b = \frac{7}{9}$ とおくと，$s_m = ab^{m-2}$ より

\[t_m = \sum_{k=1}^{m-1} s_k s_{m-k} = 2s_1 s_{m-1} + \sum_{k=2}^{m-2} s_k s_{m-k} = 2\cdot \frac{1}{3} \cdot ab^{m-3} + \sum_{k=2}^{m-2} ab^{k-2} ab^{m-k-2} \]

\[= \frac{2}{3} ab^{m-3} + \sum_{k=2}^{m-2} a^2 b^{m-4} = \frac{2}{3} ab^{m-3} + (m-3)a^2 b^{m-4} \]

\[t_m < s_m \text{ より } \frac{2}{3} ab^{m-3} + (m-3)a^2 b^{m-4} < ab^{m-2} \]

\[\frac{2}{3} + \frac{m-3}{b} < b \quad \text{ゆえに} \quad \frac{2}{3} + \frac{4}{21}(m-3) < \frac{7}{9} \]

整理すると $m < 3 + \frac{7}{12}$ 条件 $m \geq 2$ に注意して $m = 2, \; 3$

\[3 \] 1. $\overrightarrow{OQ} = \overrightarrow{OA} + t\overrightarrow{AP} = (0, 0, 2) + t(a, b, -2) = (at, bt, 2 - 2t)$

よって $Q(at, \; bt, \; 2 - 2t)$

2. S の方程式は

\[(x - 2)^2 + y^2 + z^2 = 2 \]

Q が S 上にあるとき

\[(at - 2)^2 + (bt)^2 + (2 - 2t)^2 = 2 \]

\[(a^2 + b^2 + 4)t^2 - 2(a + 4)t + 6 = 0 \]

この t に関する 2 次方程式が異なる 2 つの実数解をもつので，係数について

\[(2a + 4)^2 - 6(a^2 + b^2 + 4) > 0 \]

\[a^2 - 8a + 3b^2 + 4 < 0 \]

\[(a - 4)^2 + 3b^2 < 12 \]

よって

\[\frac{(a - 4)^2}{12} + \frac{b^2}{4} < 1 \]

不等式の表す領域は，右の楕円の内部で境界線を含まない．
別解 S の中心を $B(2, 0, 0)$ とおくと

$$ AB = 2\sqrt{2} $$

S の半径は $\sqrt{2}$ であるから，l と S が接するとき，直線 AB と l のなす角は 30°。l と S が異なる 2 点で交わるとき，l と AB のなす角を θ とすると

$$ |\cos \theta| \geq \frac{\sqrt{3}}{2} \cdots (*) $$

$$ \overrightarrow{AB} = (2, 0, -2) \text{ と } \overrightarrow{AP} = (a, b, -2) \text{ のなす角が } \theta \text{ であるから} $$

$$ \cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AP}}{|\overrightarrow{AB}| |\overrightarrow{AP}|} = \frac{2a + 4}{2\sqrt{2}\sqrt{a^2 + b^2 + 4}} = \frac{a + 2}{\sqrt{2}\sqrt{a^2 + b^2 + 4}} $$

$(*)$ より

$$ \frac{|a + 2|}{\sqrt{2}\sqrt{a^2 + b^2 + 4}} \geq \frac{\sqrt{3}}{2} $$

ゆえに

$$ \sqrt{3}\sqrt{a^2 + b^2 + 4} \geq \sqrt{2}|a + 2| $$

この両辺を平方して整理すると

$$ a^2 - 8a + 3b^2 + 4 < 0 $$

すなわち

$$ \frac{(a - 4)^2}{12} + \frac{b^2}{4} < 1 $$

補足 A を頂点、軸 (中心軸) を AB とし、母線と軸のなす角が 30° である円錐面の内部を $R(x, y, z)$ とすると

$$ \frac{\overrightarrow{AB} \cdot \overrightarrow{AR}}{|\overrightarrow{AB}| |\overrightarrow{AR}|} > \cos 30^\circ \text{ ゆえに} $$

$$ \frac{2x - 2(z - 2)}{2\sqrt{2}\sqrt{x^2 + y^2 + (z - 2)^2}} > \frac{\sqrt{3}}{2} $$

平方して整理すると

$$ x^2 + 3y^2 + z^2 + 4zx - 8x - 4z + 4 < 0 $$

上式が円錐面の内部を表す領域である。

とくに，平面 $z = 0$ 上における領域が

$$ x^2 + 3y^2 - 8x + 4 < 0 $$
(3) Q の z 座標が正であるとき 2 - 2t > 0 すなわち t < 1

2 次方程式 (a² + b² + 4)t² - 2(2a + 4)t + 6 = 0 の 2 つの解を α, β とすると、解と係数の関係により

\[\alpha + \beta = \frac{2(2a + 4)}{a² + b² + 4}, \quad \alpha \beta = \frac{6}{a² + b² + 4} \]

\(\alpha < 1, \beta < 1 \) であるから、\(\alpha - 1 < 0, \beta - 1 < 0 \) より

\((\alpha - 1) + (\beta - 1) < 0, \quad (\alpha - 1)(\beta - 1) > 0 \)

したがって \(\alpha + \beta - 2 < 0, \alpha \beta - (\alpha + \beta) + 1 > 0 \)

\[\frac{2(2a + 4)}{a² + b² + 4} - 2 < 0, \quad \frac{6}{a² + b² + 4} - \frac{2(2a + 4)}{a² + b² + 4} + 1 > 0 \]

すなわち \((a - 1)² + b² > 1, (a - 2)² + b² > 2 \)

これと、(1) の結果により

\[
\begin{align*}
(a - 4)² + b² &< 1 \\
(a - 1)² + b² &> 1 \\
(a - 2)² + b² &> 2
\end{align*}
\]

不等式の表す領域は、右の図斜線部分で境界線を含まない。
別解 l と T が相異なる 2 点で交わるとき, x と y 平面上の点 P(a, b, 0) は楕円
\[x^2 + 3y^2 - 8x + 4 = 0 \cdots ①\] の内部で, 円 \((x - 2)^2 + y^2 = 2 \cdots ②\) の外部
にあるから

\[a^2 + b^2 - 8a + 4 < 0, \quad (a - 2)^2 + b^2 > 2\]

①, ② から y を消去すると

\[x^2 + 3(2 - (x - 2)^2) - 8x + 4 = 0 \quad \text{ゆえに} \quad (x - 1)^2 = 0\]

\[x = 1 \text{のとき} \quad y = \pm 1\]

①, ② は, 点 (1, ±1, 0) で接する.

ゆえに, 点 P の x 座標について \(a > 1\)

よって

\[
\begin{cases}
 a > 1 \\
 (a - 4)^2 + 3b^2 < 12 \\
 (a - 2)^2 + b^2 > 2
\end{cases}
\]

不等式の表す領域は, 右の図斜線部分で境界線を含まない.

注意 楕円 \(x^2 + 3y^2 - 8x + 4 = 0\) の長軸上の頂点を C, D とすると, \(\angle OAC = 15^\circ\),
\(\angle OAD = 75^\circ\) であるから

\[
OC = OA \tan 15^\circ = 2(2 - \sqrt{3})
\]

\[
OD = OA \tan 75^\circ = 2(2 + \sqrt{3})
\]

x 軸上の 2 点 C, E の x 座標は, それぞれ \(4 - 2\sqrt{3}, 2 - \sqrt{2}\) であり, 直線
AC と直線 AE の間を l が通過するとき (不適), 第 2 式, 第 3 式を満たすので, \(a > 1\) が必要となる.
(1) \(z \in M \) のとき, \(\frac{1}{z} \in M \) であるから, この積は \(z \cdot \frac{1}{z} = 1 \in M \) さらに, \(1 \in M \) に対して \(-1 \in M \)

(2) \(M = \{z_1, z_2, \ldots, z_n\} \) すると \(M = \{-z_1, -z_2, \ldots, -z_n\} \) それぞれの要素の積は

\[
z_1 z_2 \cdots z_n = (-1)^n z_1 z_2 \cdots z_n
\]

\(z_k \neq 0 \) \((k = 1, 2, \ldots, n)\) であるから \((-1)^n = 1 \) よって \(n \) は偶数

(3) (1) の結果から, \(1 \in M, -1 \in M \)

\(z \neq \pm 1 \) について \(z \in M \) すると, \(\frac{1}{z} \in M, -z \in M \)

\[\frac{1}{z} \in M \] に対して \(-\frac{1}{z} \in M \)

したがって \(M = \{1, -1, z, -z, \frac{1}{z}, -\frac{1}{z}\} \)

\(z \neq 0, \pm 1 \) であるから, \(z \neq -z, z \neq \frac{1}{z} \) に注意すると

\(n = 4 \) のとき \(z = -\frac{1}{z}, -z = \frac{1}{z} \)

これを解いて \(z = \pm i \) よって \(M = \{1, -1, i, -i\} \)

(4) (3) と同様に, \(M = \{1, -1, z, -z, \frac{1}{z}, -\frac{1}{z}\} \cdots (*) \) とおくと

これらの要素に \(z \) を掛けて \(\{z, -z, z^2, -z^2, 1, -1\} \)

(i) \(z^2 = \frac{1}{z} \left(-z^2 = -\frac{1}{z} \right) \) のとき

\[z^3 = 1 \] ゆえに \((z - 1)(z^2 + z + 1) = 0 \)

\(z \neq 1 \) であるから \(z = \frac{-1 \pm \sqrt{3}i}{2} \)

(*) より \(M = \{1, -1, -1 + \sqrt{3}i, 1 - \sqrt{3}i, 1 + \sqrt{3}i, 1 - \sqrt{3}i, 1 + \sqrt{3}i\} \)

(ii) \(z^2 = -\frac{1}{z} \left(-z^2 = \frac{1}{z} \right) \) のとき

\[z^3 = -1 \] ゆえに \((z + 1)(z^2 - z + 1) = 0 \)

\(z \neq -1 \) であるから \(z = \frac{1 \pm \sqrt{3}i}{2} \)

(*) より \(M = \{1, -1, 1 + \sqrt{3}i, 1 - \sqrt{3}i, 1 + \sqrt{3}i, 1 - \sqrt{3}i, 1 + \sqrt{3}i\} \)
(i), (ii) より

\[M = \left\{ 1, -1, \frac{1 + \sqrt{3}i}{2}, \frac{1 - \sqrt{3}i}{2}, -1 + \frac{1 + \sqrt{3}i}{2}, -1 - \frac{1 + \sqrt{3}i}{2} \right\} \]

解説 \(M = \{z_1, z_2, \ldots, z_n\} \)， \(w \in M \) すると \(M = \{wz_1, wz_2, \ldots, wz_n\} \)
それぞれの要素の積は

\[z_1z_2 \cdots z_n = w^n z_1z_2 \cdots z_n \]

\(z_k \neq 0 \) \((k = 1, 2, \ldots, n)\) であるから \(w^n = 1 \)

\(M \) のそれぞれの要素は異なるから， \(z_k \in M \) を次のようにとればよい。

\[z_k = \cos \frac{2k}{n} \pi + i \sin \frac{2k}{n} \pi \quad (k = 1, 2, \ldots, n) \]

これに \(n = 4, 6 \) をそれぞれ代入すると，(3)，(4) の結果を得る。