平成15年度 名古屋大学 2次試験前期日程(数学問題)150分理·工·農·医·情報文化(自然情報) 数I·II·III·A·B·C

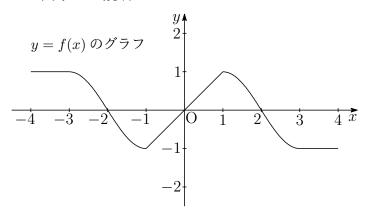
問題 1 2 3 必答, 4 5 から1 題選択

1 2次方程式 $x^2 - px - q = 0$ は実数解 α , β を持つものとする.座標平面上の点列 $\{P_n(a_n, b_n)\}$ $(n = 0, 1, 2, \cdots)$ を次のように定める. $(a_0, b_0) = (0, 0)$

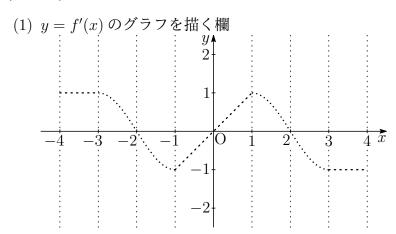
$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} q & p \\ pq & p^2 + q \end{pmatrix} \begin{pmatrix} a_{n-1} \\ b_{n-1} \end{pmatrix} + \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \quad (n = 1, 2, 3, \cdots)$$

- (1) P_2 , P_3 の座標を α のみを用いて表せ.
- (2) P_n の座標を α のみを用いて表せ.
- (3) $n \to \infty$ のとき、 $P_n(a_n, b_n)$ がある点 P(a, b) に収束するための必要十分 条件を α に関する条件として与え、その点 P(a, b) を求めよ.
- **2** O を原点とする座標平面上の、半径 1 の円周 $A: x^2 + y^2 = 1$ と直線 $\ell: y = d \ (0 < d < 1)$ との交点を P、Q とする、円周 A 上の点 R(x, y) は y > d の範囲を動く、線分 OR と線分 PQ の交点を S、点 R から線分 PQ へ下ろした垂線の足を T とするとき、線分 ST の長さの最大値を d を用いて表せ、
- 3 サイコロをn 回投げて、3 の倍数がk 回出る確率を $P_n(k)$ とする.各n について、 $P_n(k)$ を最大にするk をN(n) とする.ただし、このようなk が複数あるときは、最も大きいものをN(n) とする.
 - (1) $\frac{P_n(k+1)}{P_n(k)}$ を求めよ.
 - $(2) \ n \geqq 2 \, \text{のとき,} \ \frac{N(n)}{n} \, \text{を最小にする} \, n \, \text{と,} \ \text{そのときの} \, \frac{N(n)}{n} \, \text{の値を求めよ.}$
 - (3) $\lim_{n\to\infty} \frac{N(n)}{n}$ を求めよ.
- 4 (1) 平行四辺形 ABCD において、AB = CD = a、BC = AD = b、BC = AD = b、BD = c、AC = d とする.このとき、 $a^2 + b^2 = \frac{1}{2}(c^2 + d^2)$ が成り立つことを証明せよ.
 - (2) 3つの正数 a, b, c (0 < $a \le b \le c$) が $a^2 + b^2 > c^2$ を満たすとき、各面の 三角形の辺の長さを a, b, c とする四面体が作れることを証明せよ.

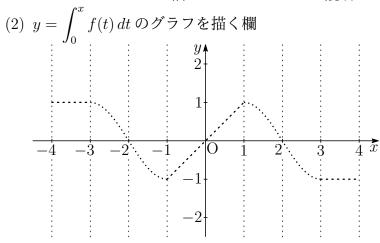
5 各点で微分可能な関数 y = f(x) のグラフが下図で与えられている.このとき, y = f'(x) と $y = \int_0^x f(t) dt$ のグラフの概形を描け.また,そのようなグラフを 描いたポイントを列挙して説明せよ.



(解答欄)



上のようなグラフを描いたポイントとその説明



上のようなグラフを描いたポイントとその説明

解答例

 $oxed{1}$ (1) 2次方程式 $x^2-px-q=0$ の解 lpha、eta と係数の関係により

$$\alpha+\beta=p,\quad \alpha\beta=-q$$

$$A=\begin{pmatrix} q & p \\ pq & p^2+q \end{pmatrix} とおいて, \quad p=\alpha+\beta, \quad q=-\alpha\beta を代入すると$$

$$A=\begin{pmatrix} -\alpha\beta & \alpha+\beta \\ -\alpha^2\beta-\alpha\beta^2 & \alpha^2+\alpha\beta+\beta^2 \end{pmatrix}$$
 したがって
$$\begin{pmatrix} a_n \\ b_n \end{pmatrix}=A\begin{pmatrix} a_{n-1} \\ b_{n-1} \end{pmatrix}+\begin{pmatrix} 1 \\ \alpha \end{pmatrix} \qquad (*)$$

$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix} \& b & \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}=\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$

$$A\begin{pmatrix} 1 \\ \alpha \end{pmatrix}=\begin{pmatrix} -\alpha\beta & \alpha+\beta \\ -\alpha^2\beta-\alpha\beta^2 & \alpha^2+\alpha\beta+\beta^2 \end{pmatrix}\begin{pmatrix} 1 \\ \alpha \end{pmatrix}=\alpha^2\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$

$$\begin{pmatrix} a_1-a_0 \\ b_1-b_1 \end{pmatrix}=\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$
 であるから、(*) & b , $n\geq 1$ のとき
$$\begin{pmatrix} a_{n+1}-a_n \\ b_{n+1}-b_n \end{pmatrix}=A\begin{pmatrix} a_n-a_{n-1} \\ b_n-b_{n-1} \end{pmatrix}=A^n\begin{pmatrix} a_1-a_0 \\ b_1-b_1 \end{pmatrix}$$

$$=A^n\begin{pmatrix} 1 \\ \alpha \end{pmatrix}=\alpha^{2n}\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$

したがって

$$\sum_{k=0}^{n-1} \begin{pmatrix} a_{k+1} - a_k \\ b_{k+1} - b_k \end{pmatrix} = \sum_{k=0}^{n-1} \alpha^{2k} \begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$

よって

$$a_n = \sum_{k=0}^{n-1} \alpha^{2k}, \quad b_n = \alpha \sum_{k=0}^{n-1} \alpha^{2k} \quad (n = 1, 2, 3, \dots)$$
 (**)

$$(**)$$
 に $n=2$, 3 を代入すると

$$a_2 = 1 + \alpha^2$$
, $b_2 = \alpha(1 + \alpha^2)$,
 $a_3 = 1 + \alpha^2 + \alpha^4$, $b_3 = \alpha(1 + \alpha^2 + \alpha^4)$

よって
$$P_2(1+lpha^2,\;lpha+lpha^3)$$
 $P_3(1+lpha^2+lpha^4,\;lpha+lpha^3+lpha^5)$

(2) (1) の結果から $P_0(0, 0)$

$$\mathrm{P}_n\left(\sum_{k=0}^{n-1}lpha^{2k},\;lpha\sum_{k=0}^{n-1}lpha^{2k}
ight)\quad (n=1,2,3,\cdots)$$

(3) (**) より、 $P_n(a_n, b_n)$ が点 P(a, b) に収束するための必要十分条件は

$$|\alpha| < 1$$
 table $-1 < \alpha < 1$

このとき
$$\lim_{n \to \infty} \sum_{k=0}^{n-1} \alpha^{2k} = \frac{1}{1-\alpha^2}$$
 ゆえに $a = \frac{1}{1-\alpha^2}$, $b = \frac{\alpha}{1-\alpha^2}$

よって
$$P\left(\frac{1}{1-lpha^2},\,\frac{lpha}{1-lpha^2}
ight)$$

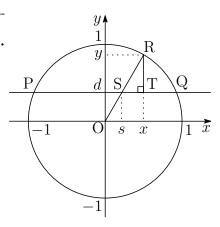
2 y 軸に関する対称性により、点R は次式を満たす第1象限の点 (x, y) としても一般性を失わない.

$$(*)$$
 $x^2 + y^2 = 1$, $x > 0$, $d < y < 1$

点Sのx座標をsとすると

$$\frac{d}{s} = \frac{y}{x} \quad \text{with} \quad s = \frac{dx}{y}$$

$$f(x) = ST$$
 とおくと $f(x) = x - \frac{dx}{y}$



(*) をx について微分すると 2x+2yy'=0 ゆえに $y'=-\frac{x}{y}$ したがって、f'(x) および f''(x) は

$$f'(x) = 1 - d\left(\frac{1}{y} - \frac{x}{y^2}y'\right) = 1 - d\left(\frac{1}{y} + \frac{x^2}{y^3}\right)$$
$$= 1 - \frac{d(x^2 + y^2)}{y^3} = 1 - \frac{d}{y^3}$$
$$f''(x) = \frac{3dy'}{y^4} = -\frac{3dx}{y^5} < 0$$

したがって、 $y = d^{\frac{1}{3}}$ 、 $x = \sqrt{1 - y^2} = \sqrt{1 - d^{\frac{2}{3}}}$ で、f(x) は極大(最大)となる.

これらを
$$f(x) = x\left(1 - \frac{d}{y}\right)$$
 に代入すると、最大値は

$$\sqrt{1-d^{\frac{2}{3}}}\left(1-d^{\frac{2}{3}}\right)=(1-d^{\frac{2}{3}})^{\frac{3}{2}}$$

(2) (1) の結果から

$$\frac{P_n(k+1)}{P_n(k)} - 1 = \frac{n-k}{2(k+1)} - 1 = \frac{n-2-3k}{2(k+1)} = \frac{3}{2(k+1)} \left(\frac{n-2}{3} - k\right)$$
$$k \le \left[\frac{n-2}{3}\right] \text{ or } \ge P_n(k+1) \ge P_n(k)$$
$$\left[\frac{n+1}{3}\right] \le k \text{ or } \ge P_n(k) > P(k+1)$$
したがって
$$N(n) = \left[\frac{n+1}{3}\right]$$

 $n \ge 2$ より, $N(n) \ge 1$ であるから, N(n) = k $(k \ge 1)$ となる n は

このとき
$$\frac{k}{3k+1} - \frac{1}{4} = \frac{k-1}{4(3k+1)} \ge 0$$
 ゆえに $\frac{N(n)}{n} \ge \frac{k}{3k+1} \ge \frac{1}{4}$

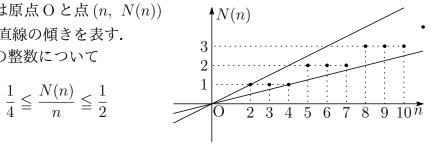
したがって,
$$\frac{N(n)}{n}$$
を最小にする n の値は, $n=3k+1$, $k-1=0$ より

$$n=4$$
 のとき $rac{N(n)}{n}=rac{1}{4}$

補足
$$\frac{1}{4} \le \frac{k}{3k+1} \le \frac{N(n)}{n} \le \frac{k}{3k-1} \le \frac{1}{2}$$
 が成立する. $\frac{N(n)}{n}$ の最大値は $n=3k-1,\ k=1$ すなわち $n=2$ のとき,最大値 $\frac{1}{2}$

 $\frac{N(n)}{n}$ は原点 O と点 (n, N(n))n を結ぶ直線の傾きを表す. $n \ge 2$ の整数について

$$\frac{1}{4} \le \frac{N(n)}{n} \le \frac{1}{2}$$



(3) $n \to \infty$ のとき, $k \to \infty$. (*) にはさみうちの原理を適用すると

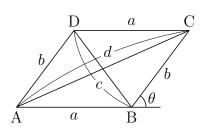
$$\lim_{n \to \infty} \frac{N(n)}{n} = \frac{\mathbf{1}}{\mathbf{3}}$$

4 (1) $\theta = \angle DAB$ とおいて、 $\triangle ABD$ 、 $\triangle ABC$ に 余弦定理を適用すると

$$c^{2} = a^{2} + b^{2} - 2ab\cos\theta,$$

$$d^{2} = a^{2} + b^{2} - 2ab\cos(\pi - \theta)$$

$$= a^{2} + b^{2} + 2ab\cos\theta$$



上の2式の辺々を加えると

$$c^2 + d^2 = 2(a^2 + b^2)$$
 ゆえに $a^2 + b^2 = \frac{1}{2}(c^2 + d^2)$

(2) $0 < a \leq b \leq c \, n^{3}$

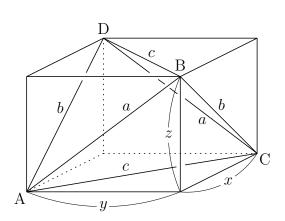
$$a^2 + b^2 > c^2$$

をみたすとき

$$b^{2} + c^{2} - a^{2} > 0,$$

$$c^{2} + a^{2} - b^{2} > 0,$$

$$a^{2} + b^{2} - c^{2} > 0$$



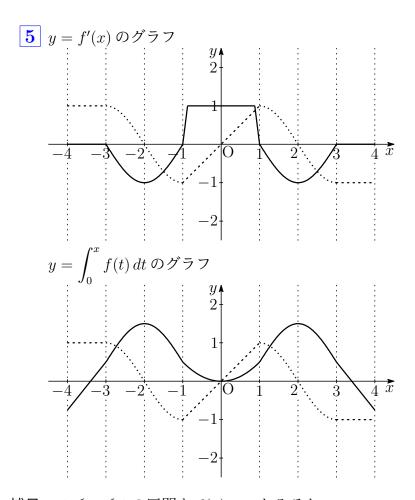
であるから

$$2x^2 = b^2 + c^2 - a^2$$
, $2y^2 = c^2 + a^2 - b^2$, $2z^2 = a^2 + b^2 - c^2$

とおくと、直方体の縦、横、高さがそれぞれx, y, z で

$$y^2 + z^2 = a^2$$
, $z^2 + x^2 = b^2$, $x^2 + y^2 = c^2$

を満たすものが唯一存在する.この直方体に埋め込まれる四面体が条件を満たす四面体 (等面四面体) である.



補足 $-1 \le x \le 1$ の区間を f(x) = x とみると

$$\lim_{x \to 1-0} f'(x) = 1, \quad \lim_{x \to -1+0} f'(x) = 1,$$

となり、グラフから判断する f'(1) = 0、f'(-1) = 0 に反する. したがって、 $x = \pm 1$ の前後で曲線になる. $x = \pm 3$ の前後で曲線と直線で接続されていても

$$f'(3) = 0, \quad f'(-3) = 0$$

であり、 $x = \pm 3$ で微分可能である.

例えば、n を 0 以上の整数とし、次の関数を考える.

$$f(x) = \begin{cases} 0 & (x \le 0) \\ x^{n+1} & (x > 0) \end{cases}$$

f(x) は、x=0 で連続であるが、n=0 のとき、x=0 で微分可能ではない。 $n \ge 1$ のとき、x=0 で微分可能で,f(x) は正則である.

f(x) は n 回微分可能で,f(x) を C^n 級といい,f(x) が何回も微分可能であるとき,f(x) を C^∞ 級という.