平成20年度 北海道大学2次試験前期日程(数学問題)120分 理系(理,医(医·保健(理学·放射線·検査)),歯,獣医,水産)

問題 1 2 3 4 5

 α , β を $0 < \alpha < \beta < 2$ を満たす実数とし、 $0 \le x \le 2$ の範囲で定義された関数 f(x) を

$$f(x) = |(x - \alpha)(x - \beta)|$$

とする.

- (1) f(x) の最大値を M とする. f(x) = M となる x がちょうど 3 つあるとき, 実数 α , β と M の値を求めよ.
- (2) (1) で求めた α , β について, f(x) mx = 0 が異なる 3 つの解をもつような実数 m の値の範囲を求めよ.

$$A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
 と表す.

- (2) n が奇数ならば a_n は偶数であること,および,n が偶数ならば a_n は奇数 であることを示せ.
- 3 関数 f(x) を

$$f(x) = \frac{3x^2}{2x^2 + 1}$$

とする.

- (1) 0 < x < 1 ならば、0 < f(x) < 1 となることを示せ.
- (2) f(x) x = 0 となる x をすべて求めよ.
- (3) $0 < \alpha < 1$ とし、数列 $\{a_n\}$ を

$$a_1 = \alpha, \quad a_{n+1} = f(a_n) \quad (n = 1, 2, \cdots)$$

とする. α の値に応じて, $\lim_{n\to\infty}a_n$ を求めよ.

- 4 xyz空間の原点 O と,O を中心とし半径 1 の球の球面上の異なる 4 点 A,B,C,D を考える.点 A $\left(\cos\frac{\alpha}{2},\sin\frac{\alpha}{2},0\right)$,B $\left(\cos\left(-\frac{\alpha}{2}\right),\sin\left(-\frac{\alpha}{2}\right),0\right)$, $\left(0<\alpha<\pi\right)$ とする.点 C,D は \angle COA = \angle COB = \angle DOA = \angle DOB を満たし,点 C の z 座標は正,点 D の z 座標は負とする.
 - (1) 点 C の座標を α と $\theta = \angle COA$ ($0 < \theta < \pi$) で表せ.
 - (2) ベクトル \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} の相異なる 2 つのベクトルのなす角がすべて等しいとき、点 C の座標を求めよ.
- **5** 関数 f(x) と g(x) を $0 \le x \le 1$ の範囲で定義された連続関数とする.
 - (1) $f(x) = \int_0^1 e^{x+t} f(t) dt$ を満たす f(x) は定数関数 f(x) = 0 のみであることを示せ.
 - (2) $g(x) = \int_0^1 e^{x+t} g(t) dt + x$ を満たす g(x) を求めよ.

解答例

1 (1) 条件を満たすとき

$$M = f(0) = f\left(\frac{\alpha + \beta}{2}\right) = f(2)$$

が成立するから

$$M = \alpha\beta = \frac{1}{4}(\beta - \alpha)^2 = (2 - \alpha)(2 - \beta)$$

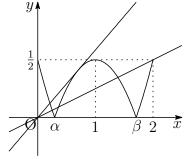
したがって
$$M = \alpha\beta = \frac{1}{4}(\alpha + \beta)^2 - \alpha\beta = \alpha\beta - 2(\alpha + \beta) + 4$$

これを解いて
$$M=\frac{1}{2}$$
, $\alpha+\beta=2$, $\alpha\beta=\frac{1}{2}$

$$\alpha$$
, β を解とする 2 次方程式は $t^2-2t+\frac{1}{2}=0$

lpha < eta に注意してこれを解くと $lpha = 1 - rac{1}{\sqrt{2}}, \ eta = 1 + rac{1}{\sqrt{2}}$

(2) 方程式 f(x)-mx=0 の解の個数は、y=f(x) と y=mx の共有点の個数と等しい。 原点と点 $\left(2,\frac{1}{2}\right)$ を通る直線の傾きは $\frac{1}{4}$ $\alpha < x < 1$ において,y=f(x) と y=mx が 接するとき,方程式



$$-x^2 + 2x - \frac{1}{2} = mx$$

すなわち,
$$x^2 + (m-2)x + \frac{1}{2} = 0$$
 は重解をもつから

$$(m-2)^2 - 4 \cdot 1 \cdot \frac{1}{2} = 0$$
 これを解いて $m = 2 \pm \sqrt{2}$

このとき,
$$\alpha < -\frac{m-2}{2} < 1$$
 に注意して $m = 2 - \sqrt{2}$

よって,求める
$$m$$
の値の範囲は $\frac{1}{4} < m < 2 - \sqrt{2}$

2 (1)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ について, $AA^n = A^n A$ であるから
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2a_n + c_n & 2b_n + d_n \\ a_n + 2c_n & b_n + 2d_n \end{pmatrix} = \begin{pmatrix} 2a_n + b_n & a_n + 2b_n \\ 2c_n + d_n & c_n + 2d_n \end{pmatrix}$$

成分を比較することにより $a_n=d_n$, $b_n=c_n$

Aにハミルトン・ケーリーの定理を適用すると

$$A^2 - 4A + 3E = O$$
 ゆえに $A^{n+2} = 4A^{n+1} - 3A^n$

したがって $a_{n+2} = 4a_{n+1} - 3a_n$

数列 $\{a_n\}$ は整数の項からなり、法2ついて

$$a_{n+2} \equiv 4a_{n+1} - 3a_n \equiv a_n \pmod{2}$$

 a_1 は偶数であるから、n が奇数のとき、 a_n は偶数 a_2 は奇数であるから、n が偶数のとき、 a_n は奇数

したがって
$$\frac{1}{2} < \alpha < x < 1$$
 のとき $0 < h(x) < h(\alpha) < h\left(\frac{1}{2}\right) = 1$

(i)
$$0 < \alpha < \frac{1}{2}$$
 のとき $0 < a_n < \alpha < \frac{1}{2}$ より $0 < g(a_n) < g(\alpha) < 1$ $a_{n+1} = g(a_n)a_n$ であるから

$$a_n = \alpha \prod_{k=1}^{n-1} g(a_k) < \alpha \{g(\alpha)\}^{n-1}$$

 $a_n > 0$, $\lim_{n \to \infty} \alpha \{g(\alpha)\}^{n-1} = 0$ であるから、はさみうちの原理により

$$\lim_{n\to\infty} a_n = 0$$

(ii)
$$\alpha=\frac{1}{2}$$
 のとき (2)の結果から $a_n=\frac{1}{2}$ ゆえに $\lim_{n\to\infty}a_n=\frac{1}{2}$

(iii)
$$\frac{1}{2} < \alpha < 1$$
 のとき $\frac{1}{2} < \alpha < a_n < 1$ より $0 < h(a_n) < h(\alpha) < 1$ $1 - a_{n+1} = h(a_n)(1 - a_n)$ より

$$1 - a_n = (1 - \alpha) \prod_{k=1}^{n-1} h(a_k) < (1 - \alpha) \{h(\alpha)\}^{n-1}$$

 $1-a_n>0$, $\lim_{n\to\infty}(1-\alpha)\{h(\alpha)\}^{n-1}=0$ であるから,はさみうちの原理により

$$\lim_{n\to\infty} (1-a_n) = 0 \quad \text{ftb} \quad \lim_{n\to\infty} a_n = 1$$

$$\text{(i)}{\sim}\text{(iii)}~ \text{$\mbox{$\mbox{\downarrow}$}$} \quad \lim_{n \to \infty} a_n = \left\{ \begin{array}{ll} 0 & (0 < \alpha < \frac{1}{2}) \\ \frac{1}{2} & (\alpha = \frac{1}{2}) \\ 1 & (\frac{1}{2} < \alpha < 1) \end{array} \right.$$

補足
$$g(x) = \frac{3x}{2x^2+1}$$
 $(0 < x < \frac{1}{2})$, $h(x) = \frac{x+1}{2x^2+1}$ $(\frac{1}{2} < x < 1)$ とおくと

$$g'(x) = \frac{3(1 - 2x^2)}{(2x^2 + 1)^2} > 0$$
$$h'(x) = \frac{-2x^2 - 4x + 1}{(2x^2 + 1)^2} = \frac{-2(x + 1)^2 + 3}{(2x^2 + 1)^2} < 0$$

したがって
$$0 < x < \alpha < \frac{1}{2}$$
 のとき $0 < g(x) < g(\alpha) < g\left(\frac{1}{2}\right) = 1$
$$\frac{1}{2} < \alpha < x < 1$$
 のとき $0 < h(x) < h(\alpha) < h\left(\frac{1}{2}\right) = 1$

解説 (3) で示した

(A)
$$0 < a_n < \frac{1}{2}$$
 のとき $0 < a_{n+1} < a_n$ ($\{a_n\}$ は下に有界な単調減少列)

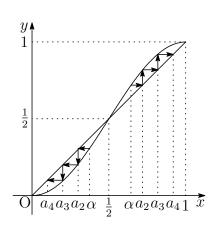
(B)
$$\frac{1}{2} < a_n < 1$$
 のとき $a_n < a_{n+1} < 1$ ($\{a_n\}$ は上に有界な単調増加列)

このとき、 $\{a_n\}$ は収束することが知られている。y=f(x) と y=x のグラフで示すと、 a_n の収束する様子が分かる。 $a_{n+1}=f(a_n)$ より

$$a_{n+1} = \frac{3a_n^2}{2a_n^2 + 1}$$

その極限値をcとすると

$$c = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n$$



であるから

$$c = \frac{3c^2}{2c^2 + 1}$$
 ゆえに $c(2c - 1)(c - 1) = 0$

よって
$$0<\alpha<\frac{1}{2}$$
 のとき、 (A) より $c=0$ $\frac{1}{2}<\alpha<1$ のとき、 (B) より $c=1$ $\alpha=\frac{1}{2}$ のとき、 $f(\alpha)=\alpha$ より $c=\frac{1}{2}$

4 (1)
$$p = \cos\frac{\alpha}{2}$$
, $q = \sin\frac{\alpha}{2}$ とおくと $(0 < \alpha < \pi)$

$$0
$$A(p, q, 0), \quad B(p, -q, 0), \quad C(c_1, c_2, c_3)$$
 とすると $(c_3 > 0)$

$$|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| = 1, \quad \angle COA = \angle COB = \theta \& \emptyset$$

$$\overrightarrow{OA} \cdot \overrightarrow{OC} = |\overrightarrow{OA}||\overrightarrow{OC}|\cos\theta \qquad \not \phi \& \mathcal{U} \qquad pc_1 + qc_2 = \cos\theta$$

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = |\overrightarrow{OB}||\overrightarrow{OC}|\cos\theta \qquad \not \phi \& \mathcal{U} \qquad pc_1 - qc_2 = \cos\theta$$

$$\cancel{EO} \ 2 \, \overrightarrow{R} \, \cancel{b} \, \overleftarrow{b} \quad c_2 = 0, \quad c_1 = \frac{\cos\theta}{p} \quad \cdots \, \textcircled{D}$$

$$\cancel{Cos}^2 \, \theta + c_3^2 = 1 \quad c_3 > 0 \& \emptyset \quad c_3 = \sqrt{1 - \frac{\cos^2\theta}{p^2}}$$

$$\cancel{Loc} \quad C \left(\frac{\cos\theta}{\cos^2\theta}, 0, \sqrt{1 - \frac{\cos^2\theta}{\cos^2\frac{\alpha}{2}}}\right)$$$$

(2) CとDはxy 平面に関して対称であるから、 $C(c_1, 0, c_3)$, $D(c_1, 0, -c_3)$ とおくと、 $\angle COD = \theta = \alpha$ であるから

$$\overrightarrow{OC} \cdot \overrightarrow{OD} = |\overrightarrow{OC}||\overrightarrow{OD}|\cos\theta \quad \text{ゆえに} \quad c_1^2 - c_3^2 = \cos\theta$$

$$|\overrightarrow{OC}|^2 = c_1^2 + c_3^2 = 1 \cdots 2 \text{ であるから} \qquad 2c_1^2 = \cos\theta + 1 \quad \cdots 3$$

$$\mathcal{COE} \stackrel{\mathfrak{F}}{=} \cos\theta = \cos\alpha = 2\cos^2\frac{\alpha}{2} - 1 = 2p^2 - 1 \text{ であるから}, \text{ ① より}$$

$$c_1 = \frac{\cos\theta}{p} = \frac{2p^2 - 1}{p} \quad \cdots \text{ ①}'$$

①′を③に代入すると

$$2\left(\frac{2p^2-1}{p}\right)^2 = (2p^2-1)+1 \quad$$
ゆえに $(p^2-1)(3p^2-1)=0$ $0 に注意して $p = \frac{1}{\sqrt{3}}$ これを①' に代入して $c_1 = -\frac{1}{\sqrt{3}}$ さらに② に代入して $\frac{1}{3}+c_3{}^2=1$ $c_3>0$ に注意して $c_3=\frac{\sqrt{2}}{\sqrt{3}}$ よって $C\left(-\frac{\sqrt{3}}{3},\ 0,\ \frac{\sqrt{6}}{3}\right)$$