平成29年度 北海道大学2次試験前期日程（数学問題）90分
文系（文、教育、法、経済、医（保健【看護・作業】））

1. 自然数の2乗となる数を平方数という。
 (1) 自然数 \(a, n, k \) に対して、
 \(n(n+1)+a=(n+k)^2 \) が成り立つとき、
 \[a \geq k^2 + 2k - 1 \]
 が成り立つことを示せ。
 (2) \(n(n+1)+7 \) が平方数となるような自然数 \(n \) をすべて求めよ。

2. 平面上の点 \(O \) を中心とする半径1の円を \(C \) とする。円 \(C \) の内部に点 \(A \) がある。
 点 \(C \) の周上を2点 \(P, Q \) が条件 \(\overrightarrow{AP} \perp \overrightarrow{AQ} \) を満たしながら動く。
 線分 \(PQ \) の中点を \(R \) とする。また、
 \(\overrightarrow{OA} = \overrightarrow{a}, \quad |\overrightarrow{a}| = r, \quad \overrightarrow{OP} = \overrightarrow{p}, \quad \overrightarrow{OQ} = \overrightarrow{q} \)
 とする。ただし、
 \(0 < r < 1 \) とする。
 (1) \(|\overrightarrow{AR}|^2 \) を内積 \(\overrightarrow{p} \cdot \overrightarrow{q} \) を用いて表せ。
 (2) 直線 \(OA \) 上の点 \(B \) で、
 \(|\overrightarrow{BR}|^2 \) が2点 \(P, Q \) の位置によらず一定であるものを
 求めよ。また、このときの \(|\overrightarrow{BR}|^2 \) の値を \(r \) を用いて表せ。

3. 正四面体 \(ABCD \) の頂点を移動する点 \(P \) がある。点 \(P \) は、1秒ごとに、隣の3
 頂点のいずれかに等しい確率 \(\frac{a}{3} \) で移るか、もとの頂点に確率 \(1-a \) で留まる。
 初め頂点 \(A \) にいた点 \(P \) が、\(n \)秒後に頂点 \(A \) にいる確率を \(p_n \) とする。ただし、
 \(0 < a < 1 \) とし、\(n \) は自然数とする。
 (1) 数列 \{ \(p_n \) \} の漸化式を求めよ。
 (2) 確率 \(p_n \) を求めよ。

4. \(a, b \) を実数とし、関数 \(f(x) \) が
 \[f(x) = \frac{1}{3}x^3 - ax^2 + (a^2 - b)x + \int_{-1}^{1} f(t) \, dt \]
 を満たすとする。
 (1) \(f(0) \) の値を \(a \) を用いて表せ。
 (2) 関数 \(f(x) \) が\(x > 1 \)の範囲で極大値を持つとする。このような \(a, b \) が満た
 す条件を求めよ。また、点 \(P(a, b) \) の存在範囲を座標平面上に図示せよ。
解答例

1 (1) $n(n+1) + a = (n+k)^2$ ･･･(*) より

$$a = (n+k)^2 - n(n+1)$$
$$= k^2 + n(2k - 1) ･･･①$$

n, k は自然数であるから，$n \geq 1, 2k - 1 > 0$ より

$$a \geq k^2 + 1(2k - 1) \text{ ゆえに } a \geq k^2 + 2k - 1 ･･･(**)$$

(2) (*) において，$a = 7$ であるから，このとき，(**) により

$$7 \geq k^2 + 2k - 1 \text{ ゆえに } (k+4)(k-2) \leq 0$$

これを満たす自然数 k は 1, 2

① より，$n = \frac{7 - k^2}{2k - 1}$ であるから

$k = 1$ のとき $n = 6, \ k = 2$ のとき $n = 1$

よって，求める自然数 n は 1, 6
2. (1) \(\overrightarrow{AP} = p - \overrightarrow{a}, \overrightarrow{AQ} = q - \overrightarrow{a} \) について、\(\overrightarrow{AP} \perp \overrightarrow{AQ}, |\overrightarrow{a}| = r \) であるから
\[
\overrightarrow{AP} \cdot \overrightarrow{AQ} = (p - a) \cdot (q - a) = p \cdot q - (p + q) \cdot a + r^2 = 0 \quad \cdots \quad (1)
\]
R は 2 点 P, Q の中点であるから、\(\overrightarrow{OR} = \frac{1}{2}(p + q) \) より (|\(p | = |q| = 1)\n\[
|\overrightarrow{AR}|^2 = |\overrightarrow{OR} - \overrightarrow{OA}|^2 = \left| \frac{1}{2}(p + q) - a \right|^2
\]
\[
= \frac{1}{4}|p + q|^2 - (p + q) \cdot a + |a|^2
\]
\[
= \frac{1}{2}((p + q)^2 + 2p \cdot q + |q|^2) - (p + q) \cdot a + r^2
\]
\[
= \frac{1}{2} + \frac{1}{2}p \cdot q - (p + q) \cdot a + r^2
\]
(1) から、\(-(p + q) \cdot a + r^2 = -p \cdot q \) を上式に代入すると
\[
|\overrightarrow{AR}|^2 = \frac{1}{2} + tp \cdot q - p \cdot q = \frac{1}{2} - \frac{1}{2}p \cdot q
\]
(2) 点 B は直線 OA 上の点であるから、\(\overrightarrow{OB} = t \overrightarrow{a} \) とおくと (t は実数)
\[
|\overrightarrow{BR}|^2 = |\overrightarrow{OR} - \overrightarrow{OB}|^2 = \left| \frac{1}{2}(p + q) - ta \right|^2
\]
\[
= \frac{1}{4}|p + q|^2 - t(p + q) \cdot a + t^2|a|^2
\]
\[
= \frac{1}{2}(1 + p \cdot q) - t(p + q) \cdot a + r^2t^2
\]
(1) より、\((p + q) \cdot a = p \cdot q + r^2 \) を上式に代入すると
\[
|\overrightarrow{BR}|^2 = \frac{1}{2}(1 + p \cdot q) - t(p \cdot q + r^2) + r^2t^2
\]
\[
= \left(\frac{1}{2} - t \right) p \cdot q + \frac{1}{2} + (t^2 - t)r^2
\]
上式が、2 点 P, Q の位置によらず一定であるとき
\[
\frac{1}{2} - t = 0 \quad \text{ゆえに} \quad t = \frac{1}{2}
\]
よって、B は線分 OA の中点で、\(|\overrightarrow{BR}|^2 = \frac{1}{2} - \frac{r^2}{4} \)
(1) 点Pがn秒後に頂点Aにいる確率がp_nであるから，点Pがn秒後に頂点B，C，Dにいる確率は等しく
\[
\frac{1 - p_n}{3}
\]
であるから，点Pが$n+1$秒後にAにいる確率は
\[
p_{n+1} = (1 - a)p_n + 3 \times \frac{a}{3} \cdot \frac{1 - p_n}{3}
\]
よって
\[
p_{n+1} = \left(1 - \frac{4}{3}a\right)p_n + \frac{a}{3}
\]
(2) (1) の結果から
\[
p_{n+1} - \frac{1}{4} = \left(1 - \frac{4}{3}a\right)\left(p_n - \frac{1}{4}\right)
\]
数列 \(\left\{ p_n - \frac{1}{4} \right\} \) は初項 \(p_1 - \frac{1}{4}\)，公比 \(1 - \frac{4}{3}a\) の等比数列であるから
\[
p_n - \frac{1}{4} = \left(1 - \frac{4}{3}a\right)^{n-1}\left(p_1 - \frac{1}{4}\right)
\]
\[
p_n = \frac{1}{4} + \left(1 - \frac{4}{3}a\right)^{n-1}\left(1 - a - \frac{1}{4}\right)
\]
\[= \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}a\right)^n\]
(1) \(k = \int_{-1}^{1} f(t) \, dt \) とおくと，\(f(x) = \frac{1}{3}x^3 - ax^2 + (a^2 - b)x + k \) より

\[
k = \int_{-1}^{1} \left(\frac{1}{3}t^3 - at^2 + (a^2 - b)t + k \right) \, dt
= \left[\frac{1}{12}t^4 - \frac{1}{3}at^3 + \frac{1}{2}(a^2 - b)t^2 + kt \right]_{-1}^{1}
= -\frac{2}{3}a + 2k
\]

ゆえに \(k = \frac{2}{3}a \) したがって \(f(x) = \frac{1}{3}x^3 - ax^2 + (a^2 - b)x + \frac{2}{3}a \cdots (*) \)

よって \(f(0) = \frac{2}{3}a \)

(2) \((*)\) から \(f'(x) = x^2 - 2ax + a^2 - b = (x - a)^2 - b \)
2 次方程式 \(f'(x) = 0 \) が \(x > 1 \) において，異なる 2 つの実数解をもつから

\[a > 1, \quad f'(a) = -b < 0, \quad f'(1) = (1 - a)^2 - b > 0 \]

ゆえに \(a > 1, \quad b > 0, \quad b < (a - 1)^2 \)

よって，点 \(P(a, b) \) の存在範囲は，下図の斜線部分で境界線を含まない。