平成27年度 北海道大学2次試験前期日程(数学問題)90分 文系(文,教育,法,経済,医(保健[看護·作業]))

問題 1 2 3 4

1 2つの放物線

$$C_1: y = x^2, \quad C_2: y = -(x-1)^2$$

がある. a は 0 でない実数とし, C_1 上の 2 点 $P(a, a^2)$, $Q(-2a, 4a^2)$ を通る直線と平行な C_1 の接線を ℓ とする.

- (1) ℓ の方程式を a で表せ.
- (2) C_2 と ℓ が異なる 2 つの共有点をもつような a の値の範囲を求めよ.
- (3) C_2 と ℓ が異なる 2 つの共有点 R, S をもつとする. 線分 PQ の長さと線分 RS の長さが等しくなるとき. a の値を求めよ.
- **2** pは0でない実数とし

$$a_1 = 1$$
, $a_{n+1} = \frac{1}{p}a_n - (-1)^{n+1}$ $(n = 1, 2, 3, \dots)$

によって定まる数列 $\{a_n\}$ がある.

- (1) $b_n = p^n a_n$ とする. b_{n+1} を b_n , n, p で表せ.
- (2) 一般項 a_n を求めよ.
- 3 平面において、一直線上にない 3 点 O、 A、 B がある。O を通り直線 OA と垂直な直線上に O と異なる点 P をとる。O を通り直線 OB と垂直な直線上に O と異なる点 Q をとる。ベクトル $\overrightarrow{OP} + \overrightarrow{OQ}$ は \overrightarrow{AB} に垂直であるとする。
 - (1) $\overrightarrow{OP} \cdot \overrightarrow{OB} = \overrightarrow{OQ} \cdot \overrightarrow{OA}$ を示せ.
 - (2) ベクトル \overrightarrow{OA} , \overrightarrow{OB} のなす角を α とする. ただし, $0 < \alpha < \frac{\pi}{2}$ とする. このときベクトル \overrightarrow{OP} , \overrightarrow{OQ} のなす角が $\pi \alpha$ であることを示せ.
 - (3) $\frac{|\overrightarrow{OP}|}{|\overrightarrow{OA}|} = \frac{|\overrightarrow{OQ}|}{|\overrightarrow{OB}|}$ を示せ.
- $\boxed{4}$ ジョーカーを除く1組52枚のトランプのカードを1列に並べる試行を考える.
 - (1) 番号7のカードが4枚連続して並ぶ確率を求めよ.
 - (2) 番号7のカードが2枚ずつ隣り合い,4枚連続しては並ばない確率を求めよ.

解答例

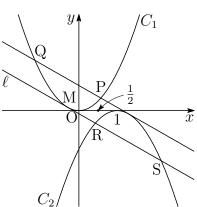
1 (1) 2点 P(a, a²), Q(-2a, 4a²) を通る直線 の傾きは

$$\frac{4a^2 - a^2}{-2a - a} = -a$$

$$C_1: y = x^2 \, \, \ \, \ \, \mathcal{Y} \qquad y' = 2x$$

 C_1 と接線 ℓ の接点を M とすると, M の x 座標は (実は,P と Q の x 座標の中央)

$$2x = -a$$
 ゆえに $x = -\frac{a}{2}$



 ℓ は点 $\mathrm{M}\left(-\frac{a}{2},\,\frac{a^2}{4}\right)$ を通り、傾き -a の直線であるから

$$y - \frac{a^2}{4} = -a\left(x + \frac{a}{2}\right)$$
 すなわち $y = -ax - \frac{a^2}{4}$

(2) $C_2: y = -(x-1)^2$ と ℓ の方程式から y を消去すると

上の2次方程式(*)の判別式Dは

$$D = (a+2)^2 - 4\left(1 - \frac{a^2}{4}\right) = 2a(a+2)$$

 C_2 と ℓ は異なる2つの共有点をもつから,D>0より

$$2a(a+2) > 0$$
 これを解いて $a < -2$, $0 < a$

(3) PQ = RS が成立するとき、 $2 \triangle P$, Q O x 座標の差と $2 \triangle R$, S O x 座標の差が等しいから

$$|-2a-a|=\frac{a+2+\sqrt{D}}{2}-\frac{a+2-\sqrt{D}}{2}\quad \text{with}\quad |3a|=\sqrt{D}$$

両辺を平方すると $9a^2=2a(a+2)$ $a\neq 0$ に注意して $a=\frac{4}{7}$

補足 C_1 と C_2 は点 $\left(\frac{1}{2}, 0\right)$ に関して対称である. PQ = RSが成立するとき,直線 $PQ: y = -ax + 2a^2$ と ℓ は点 $\left(\frac{1}{2}, 0\right)$ に関して対称となる. 直線 PQ および ℓ のx切片は,それぞれ 2a, $-\frac{a}{4}$ で,その中央が $\frac{1}{2}$ であるから

$$rac{2a+\left(-rac{a}{4}
ight)}{2}=rac{1}{2}$$
 これを解いて $oldsymbol{a}=rac{4}{7}$

(2)
$$b_1 = pa_1 = p \cdot 1 = p$$
, (1) の結果から $b_{n+1} - b_n = -(-p)^{n+1}$ (i) $-p \neq 1$, すなわち, $p \neq -1$ のとき, $n \geq 2$ に対して

$$\sum_{k=1}^{n-1} (b_{k+1} - b_k) = -\sum_{k=1}^{n-1} (-p)^{k+1}$$

$$b_n - p = -\frac{(-p)^2 \{1 - (-p)^{n-1}\}}{1 - (-p)}$$

$$b_n = \frac{p + (-p)^{n+1}}{1 + p}$$

上式は,n=1のときも成立するから $b_n=rac{p+(-p)^{n+1}}{1+n}$

(ii)
$$-p=1$$
, すなわち, $p=-1$ のとき, $n \ge 2$ に対して

$$\sum_{k=1}^{n-1} (b_{k+1} - b_k) = -\sum_{k=1}^{n-1} b_n - (-1) = -(n-1)$$
$$b_n = -n$$

上式は,n=1のときも成立するから $b_n=-n$

(i),(ii)から、一般項 a_n は

$$a_n = rac{b_n}{p^n} = \left\{ egin{array}{ll} rac{1 - (-p)^n}{(1+p)p^{n-1}} & (p
eq -1) \ (-1)^{n-1}n & (p = -1) \end{array}
ight.$$

$$3$$
 (1) $\overrightarrow{OP} + \overrightarrow{OQ}$ は \overrightarrow{AB} と垂直で、 $\overrightarrow{OA} \bot \overrightarrow{OP}$ 、 $\overrightarrow{OB} \bot \overrightarrow{OQ}$ であるから

$$\begin{split} (\overrightarrow{OP} + \overrightarrow{OQ}) \cdot \overrightarrow{AB} &= (\overrightarrow{OP} + \overrightarrow{OQ}) \cdot (\overrightarrow{OB} - \overrightarrow{OA}) \\ &= \overrightarrow{OP} \cdot \overrightarrow{OB} - \overrightarrow{OP} \cdot \overrightarrow{OA} + \overrightarrow{OQ} \cdot \overrightarrow{OB} - \overrightarrow{OQ} \cdot \overrightarrow{OA} \\ &= \overrightarrow{OP} \cdot \overrightarrow{OB} - \overrightarrow{OQ} \cdot \overrightarrow{OA} = 0 \end{split}$$

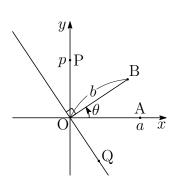
よって
$$\overrightarrow{OP} \cdot \overrightarrow{OB} = \overrightarrow{OQ} \cdot \overrightarrow{OA}$$

(2) $a,b,p>0, q\neq 0$ とし、 $\alpha=|\theta|$ を満たす θ をとる。条件から、一般性を失うことなく

$$\overrightarrow{OA} = (a, 0), \quad \overrightarrow{OP} = (0, p),$$

$$\overrightarrow{OB} = (b\cos\theta, b\sin\theta)$$

$$\overrightarrow{OQ} = (q\sin\theta, -q\cos\theta)$$



とおくことができる. このとき

$$\overrightarrow{OP} \cdot \overrightarrow{OB} = bp \sin \theta, \quad \overrightarrow{OQ} \cdot \overrightarrow{OA} = aq \sin \theta$$

これを (1) の結果に代入すると $bp\sin\theta = aq\sin\theta$

$$0<|\theta|<rac{\pi}{2}$$
 であるから $bp=aq$ $\cdots(*)$

a, b, p > 0 であるから、(*) より q > 0

$$p = |\overrightarrow{\mathrm{OP}}|$$
, $q = |\overrightarrow{\mathrm{OQ}}|$, $0 < |\theta| < \frac{\pi}{2}$ であるから

$$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}} = -pq \cos \theta = -|\overrightarrow{\mathrm{OP}}||\overrightarrow{\mathrm{OQ}}| \cos |\theta|$$
$$= -|\overrightarrow{\mathrm{OP}}||\overrightarrow{\mathrm{OQ}}| \cos \alpha$$
$$= |\overrightarrow{\mathrm{OP}}||\overrightarrow{\mathrm{OQ}}| \cos(\pi - \alpha)$$

上式より、 $\overrightarrow{\mathrm{OP}}$ と $\overrightarrow{\mathrm{OQ}}$ のなす角は $\pi-\alpha$

補足 $\overrightarrow{OQ} = (-q' \sin \theta, \ q' \cos \theta)$ とおいて (1) の結果に代入すると

$$bp\sin\theta = -aq'\sin\theta$$
 ゆえに $bp = -aq'$ これより $q' = -|\overrightarrow{OQ}|$

このとき
$$\overrightarrow{OP} \cdot \overrightarrow{OQ} = pq' \cos \theta = |\overrightarrow{OP}|(-|\overrightarrow{OQ}|) \cos |\theta| = -|\overrightarrow{OP}||\overrightarrow{OQ}| \cos \alpha$$

$$(3) \ (*) \ \sharp \ \emptyset \quad |\overrightarrow{OB}||\overrightarrow{OP}| = |\overrightarrow{OA}||\overrightarrow{OQ}| \quad \ \sharp \ \neg \ \tau \quad \frac{|\overrightarrow{OP}|}{|\overrightarrow{OA}|} = \frac{|\overrightarrow{OQ}|}{|\overrightarrow{OB}|}$$

4 (1) 52枚のカードの並べ方は52!通り.番号7のカードをひとまとめにすると,番号7以外の48枚のカードとひとまとめにしたカードの並べ方は

$$(48+1)! = 49!$$
 (通り)

ひとまとめにした番号7のカードの並べ方は 4! (通り)

よって、求める確率は
$$\frac{49! \cdot 4!}{52!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{52 \cdot 51 \cdot 50} = \frac{1}{\mathbf{5525}}$$

(2) 4枚の番号7のカードを2枚ずつ2組に分ける方法は $\frac{{}_4\mathrm{C}_2}{2!}=3$ (通り) 番号7のカードを2枚ずつにした2組のカードの並べ方は

$$2! \cdot 2! = 4$$
 (通り)

番号7以外の48枚のカードと2組のカードの並べ方は

$$(48+2)! = 50!$$
 (通り)

このとき、番号7の4枚が連続して並ばないので、(1)の結果を用いて

$$\frac{50! \cdot 3 \cdot 4 - 49! \cdot 4!}{52!} = \frac{50 \cdot 3 \cdot 4 - 4!}{52 \cdot 51 \cdot 50} = \frac{(25 - 1)4!}{52 \cdot 51 \cdot 50} = \frac{\mathbf{24}}{\mathbf{5525}}$$