平成 16 年度 一橋大学 2 次試験前期日程 (数学問題)120 分商・経済・法・社会学部 数 I・II・A・B 平成 16 年 2 月 25 日

問題 1 2 3 4 5

- 1 H を 1 辺の長さが 1 の正六角形とする.
 - (1) H の中にある正方形のうち、1 辺が H の 1 辺と平行なものの面積の最大値を求めよ.
 - (2) H の中にある長方形のうち、1 辺が H の 1 辺と平行なものの面積の最大値を求めよ。
- $oxed{2}$ a, b, c は整数で、a < b < c をみたす.放物線 $y = x^2$ 上に 3 点 $A(a, a^2)$, $B(b, b^2)$, $C(c, c^2)$ をとる.
 - (1) $\angle BAC = 60^{\circ}$ とはならないことを示せ、ただし、 $\sqrt{3}$ が無理数であることを証明なしに用いてよい。
 - (2) a = -3 のとき、 $\angle BAC = 45^{\circ}$ となる組(b, c) をすべて求めよ.
- 3 複素数平面上に異なる $3 \, \text{点} \, z, \, z^2, \, z^3 \,$ がある.
 - $(1) z, z^2, z^3$ が同一直線上にあるような z をすべて求めよ.
 - (2) z, z^2 , z^3 が二等辺三角形の頂点になるようなz の全体を複素数平面上に図示せよ. また, z, z^2 , z^3 が正三角形の頂点となるようなz をすべて求めよ.
- 4 a は実数とし、 $f(x) = x^3 + ax^2 8a^2x$ 、 $g(x) = 3ax^2 9a^2x$ とおく.
 - (1) 曲線 y = f(x) と y = g(x) の共有点 P において両方の曲線と接する直線が存在する.このとき P の座標を a で表せ.
 - (2) 次の条件 (i) および (ii) をみたす直線 l が 3 本存在するような点 (u, v) の 範囲を図示せよ.
 - (i) *l* は点 (*u*, *v*) を通る.
 - (ii) l は曲線 y = f(x) と y = g(x) の共有点 P において両方の曲線と接する.
- **5** n 枚のカードがあり、1 枚目のカードに 1、2 枚目のカードに 2、…、n 枚目のカードに n が書かれている。これらの n 枚のカードから無作為に 1 枚を取り出してもとに戻し、もう一度無作為に 1 枚を取り出す。取り出されたカードに書かれている数をそれぞれ x、y とする。また、k を n の約数とする。
 - (1) x + y が k の倍数となる確率を求めよ.

(2) さらに, k=pq とする. ただし, p, q は異なる素数である. xy が k の倍数となる確率を求めよ.

解答例

1 (1) H の 6 頂点 A, B, C, D, E, F を座標平面上にとり、A(1, 0)、B $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ とすると、直線 AB の方程式は

$$y = -\sqrt{3}(x-1)$$
 ··· ①

Hの一辺に平行でHに内接する正方形の頂点を P_1 , P_2 , P_3 , P_4 とし, P_1 を辺 AB 上の点とすると,直線 OP_1 の方程式は

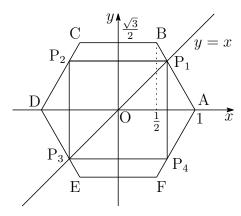
$$y = x \cdots (2)$$

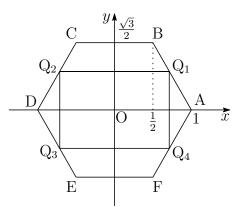
P₁ は直線 ① と直線 ② の交点であるから、これらの連立方程式を解いて

$$P_1\left(\frac{3-\sqrt{3}}{2}, \frac{3-\sqrt{3}}{2}\right)$$

正方形 $P_1P_2P_3P_4$ の一辺の長さが $3-\sqrt{3}$ より、求める面積の最大値は

$$(3-\sqrt{3})^2 = 12 - 6\sqrt{3}$$





(2) H の一辺に平行で H に内接する長方形の頂点を Q_1 , Q_2 , Q_3 , Q_4 とし, Q_1 を第 1 象限の点とする.この長方形の面積が最大となるとき, Q_1 を辺 AB 上の点 (AB の両端を含む) とすればよい.

$$Q_1(t, \sqrt{3}(1-t)), \quad \frac{1}{2} \le t \le 1$$

とすると, 長方形 Q₁Q₂Q₃Q₄ の面積は

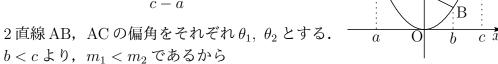
$$2t \cdot 2\sqrt{3}(1-t) = -4\sqrt{3}\left(t - \frac{1}{2}\right)^2 + \sqrt{3}$$

よって, $t=\frac{1}{2}$ のとき,最大値 $\sqrt{3}$ をとる.

 $oxed{2}$ (1) 2直線 AB, ACの傾きをそれぞれ m_1, m_2 とすると

$$m_1 = \frac{b^2 - a^2}{b - a} = a + b$$

 $m_2 = \frac{c^2 - a^2}{c - a} = a + c$



$$-\frac{\pi}{2} < \theta_1 < \theta_2 < \frac{\pi}{2}$$

とおくと、 $\angle BAC = \theta_2 - \theta_1$ より

$$\tan \angle BAC = \tan(\theta_2 - \theta_1) = \frac{\tan \theta_2 - \tan \theta_1}{1 + \tan \theta_2 \tan \theta_1} = \frac{m_2 - m_1}{1 + m_2 m_1}$$
$$= \frac{(a+c) - (a+b)}{1 + (a+c)(a+b)} = \frac{c-b}{1 + (a+c)(a+b)} \tag{*}$$

 $\angle BAC = 60^{\circ}$ のとき

$$\sqrt{3} = \frac{c-b}{1 - (a+c)(a+b)}$$

a, b, c は整数であるから、上式の右辺は有理数であり、左辺が無理数であることに反する。よって、 $\angle {\rm BAC} = 60^{\circ}$ とはならない。

(2) a=-3, $\angle BAC=45^\circ$ のとき、(*) より

$$1 = \frac{c-b}{1+(-3+c)(-3+b)}$$
 ゆえに $(b-4)(c-2) = -2$

b < c に注意して (b-4, c-2) = (-2, 1), (-1, 2)

よって
$$(b, c) = (2, 3), (3, 4)$$

3 (1) 複素数平面上の $3 \, \text{点} \, z, \, z^2, \, z^3$ が異なる点であるから

$$z \neq z^2$$
, $z \neq z^3$, $z^2 \neq z^3$ $\Rightarrow z \Rightarrow 0, \pm 1$

このとき、3点z, z^2 , z^3 が同一直線上にあるから

$$\frac{z^3 - z}{z^2 - z} = \frac{z(z+1)(z-1)}{z(z-1)} = z+1$$

は実数である. よって、zは $z \neq 0$, ± 1 の実数

- (2) (1) の結果から、z が実数であるとき (z=0, ± 1 も含めて)、z, z^2 , z^3 は同一直線上にある。したがって、z が実数でないことが、これらの 3 点が二等辺三角形となるための必要条件である。実数でない z に対して、A(z)、 $B(z^2)$ 、 $C(z^3)$ とする。このとき、 $\triangle ABC$ が二等辺三角形となるのは、次の 3 つの場合である。
 - (i) AB = AC のとき $|z^2 z| = |z^3 z|$

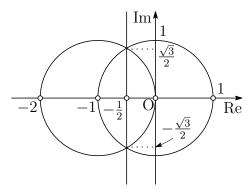
$$|z||z-1| = |z||z+1||z-1|$$
 $z \neq -2, 0$

(ii) BA = BC のとき $|z^2 - z| = |z^3 - z^2|$

(iii) CA = CB のとき $|z^3 - z| = |z^3 - z^2|$

$$|z||z+1||z-1|=|z|^2|z-1|$$
 すなわち $|z+1|=|z|,\ z\neq -rac{1}{2}$

3点z,z²,z³が二等辺三角形となる点zの全体は次のようになる.



3点z, z^2 , z^3 が正三角形となる点zの全体は,(i)~(iii) のいずれか2つを同時にみたす点zであるから

$$z = \frac{-1 \pm \sqrt{3}i}{2}$$

4 (1)
$$f(x) = x^3 + ax^2 - 8a^2x$$
, $g(x) = 3ax^2 - 9a^2x$ (a は実数) より $f'(x) = 3x^2 + 2ax - 8a^2$, $g'(x) = 6ax - 9a^2$ このとき, $y = f(x)$ と $y = g(x)$ の共有点の x 座標は $x^3 + ax^2 - 8a^2x = 3ax^2 - 9a^2x$ ゆえに $x(x - a)^2 = 0$ $x = 0$, a のとき $f'(0) = 0$, $g'(0) = 0$, $f'(a) = -3a^2$, $g'(a) = -3a^2$ 以上の結果から $f(0) = f(0) = 0$, $f'(0) = g'(0)$ $f(a) = g(a) = -6a^3$, $f'(a) = g'(a)$

よって、求める点 P の座標は $(a, -6a^3)$

(2) (1) の結果から、l は点 $(a, -6a^3)$ を通り、傾き $-3a^2$ の直線であるから

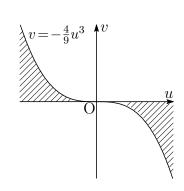
$$y + 6a^3 = -3a^2(x - a)$$
 すなわち $y = -3a^2x - 3a^3$

lが点 (u, v) を通るから

$$v = -3a^2u - 3a^3$$
 a について整理すると $3a^3 + 3ua^2 + v = 0$

$$h(a)=3a^3+3ua^2+v$$
 とおくと
$$h'(a)=9a^2+6ua=9a\left(a+\frac{2}{3}u\right)$$

$$h'(a)=0$$
 とすると $a=0,-\frac{2}{3}u$
$$h(0)h\left(-\frac{2}{3}u\right)<0$$
 を満たせばよいから
$$v\left(v+\frac{4}{9}u^3\right)<0$$



よって、求める点(u, v)のとる領域は、図の斜線部分で境界線を含まない。

5 (1) k は n の約数であるから、整数 l を $l = \frac{n}{k}$ とする.

 $U = \{1, 2, \dots, n\}$ を全体集合とし、1 からn の自然数でk で割った余りがr となる集合を $A_r(r=0,1,2,\dots,k)$ とし、 A_k と A_0 は同一とすると、 A_r の要素の個数はk である。k=1 がk の倍数であるから

$$x \in A_j$$
 のとき $y \in A_{k-j}$ $(j = 0, 1, 2, \cdots, k-1)$

このとき, (x, y) の組の総数は l^2k

よって、求める確率は
$$\frac{l^2k}{n^2} = \frac{1}{n^2} \left(\frac{n}{k}\right)^2 k = \frac{1}{k}$$

- (2) 2数の積xyがpqの倍数となる(x, y)の組の個数を求める.
 - (i) 一方i p の倍数c q の倍数でない. 他方i q の倍数c p の倍数でない.

$$2\left(\frac{n}{p} - \frac{n}{pq}\right)\left(\frac{n}{q} - \frac{n}{pq}\right)$$

(ii) 一方がpqの倍数で、他方がpqの倍数でない。

$$2 \times \frac{n}{pq} \left(n - \frac{n}{pq} \right)$$

(iii) ともに pq の倍数である.

$$\left(\frac{n}{pq}\right)^2$$

(i)~(iii) より,(x, y) の組の総数は

$$2\left(\frac{n}{p} - \frac{n}{pq}\right)\left(\frac{n}{q} - \frac{n}{pq}\right) + 2 \times \frac{n}{pq}\left(n - \frac{n}{pq}\right) + \left(\frac{n}{pq}\right)^{2}$$
$$= \frac{n^{2}}{p^{2}q^{2}}(4pq - 2p - 2q + 1) = \frac{n^{2}}{p^{2}q^{2}}(2p - 1)(2q - 1)$$

よって,求める確率は
$$\dfrac{(2p-1)(2q-1)}{p^2q^2}$$

別解 x, y はいずれも p の倍数でない事象を A とし,x, y はいずれも q の倍数でない事象を B とする. A,B の要素の個数をそれぞれ N(A),N(B) とすると

$$\begin{split} N(A) &= \left(n - \frac{n}{p}\right)^2 = n^2 \left(1 - \frac{1}{p}\right)^2 \\ N(B) &= \left(n - \frac{n}{q}\right)^2 = n^2 \left(1 - \frac{1}{q}\right)^2 \\ N(A \cap B) &= \left(n - \frac{n}{p} - \frac{n}{q} + \frac{n}{pq}\right)^2 = n^2 \left(1 - \frac{1}{p}\right)^2 \left(1 - \frac{1}{q}\right)^2 \end{split}$$

したがって

$$\begin{split} N(\overline{A} \cap \overline{B}) &= N(\overline{A \cup B}) = n^2 - N(A \cup B) \\ &= n^2 - \{N(A) + N(B) - N(A \cap B)\} \\ &= n^2 - n^2 \left(1 - \frac{1}{p}\right)^2 - n^2 \left(1 - \frac{1}{q}\right)^2 + n^2 \left(1 - \frac{1}{p}\right)^2 \left(1 - \frac{1}{q}\right)^2 \\ &= n^2 \left\{1 - \left(1 - \frac{1}{p}\right)^2\right\} \left\{1 - \left(1 - \frac{1}{q}\right)^2\right\} \\ &= n^2 \left(\frac{2}{p} - \frac{1}{p^2}\right) \left(\frac{2}{q} - \frac{1}{q^2}\right) = \frac{n^2 (2p - 1)(2q - 1)}{p^2 q^2} \end{split}$$

よって,求める確率は
$$\dfrac{(2p-1)(2q-1)}{p^2q^2}$$